中文書第三層

排序方式: 瀏覽: 列表圖片
| 下一頁 »
  • 喚醒你與生俱來的數學力:重整邏輯思考系統,激發數理分析潛能的七個關鍵概念 喚醒你與生俱來的數學力:重整邏輯思考系統,激發數理分析潛能的七個關鍵概念 永野裕之 臉譜文化 出版 2014/12/9出版

    NHK、《日本經濟新聞》、《東洋經濟週刊》等日本各大媒體雜誌爭相採訪 東大畢業、日本全國最強數學補習班創辦人告訴你 「數學天分人人都有,只要從7個面向釐清觀念, 就能打開數理邏輯思維開關,為你的學業、工作、生活帶來全方面的優勢!」 ◎專為「害怕數學的人」所設計的數學邏輯思考書!不靠算式說明,對數學過敏的人也能輕易讀懂! ◎寫法直白易讀、幽默風趣,就像作者親自幫你上課,讓你不知不覺中對數學開竅! ◎舉例豐富且貼近生活,除了開發數學腦也同時增進各領域知識! 你是否自認對數學過敏,只要一看到算式就忍不住放空? 你是否也羨慕腦袋清楚、邏輯清晰,能夠迅速判斷情勢、做出決定的人? 從小到大學了這麼多的數學,到底有什麼意義?該怎麼在生活中派上用場? 本書要告訴你-- 每個人天生都有數學邏輯力, 有著內建的「數理性思維模式」, 若能有效發揮,就能在學校、職場、人際關係上表現出眾, 從容不迫地獲得更好的效率及成就感。 但這種思維模式會受到周遭情境、心理狀態等因素影響, 總是「靈光一閃」、「無意識」地顯現, 我們難以掌握,在必要時反而無法使其發揮作用。 本書作者經過多年研究及教學經驗發現, 其實只要理解數理思考的七個面向, 就能將「無意識」的數理性思維轉化為「有意識」的思考過程, 引出內在的數學潛能,在各種必要時刻派上用場。 不論你自認數學程度如何, 這個方法都能在短時間有效激發你的數學力,替你帶來極佳的優勢。 就算是覺得自己對數學不拿手的人, 只需要經過簡單的腦內整理及訓練, 就能打通邏輯思考的任督二脈,開啟潛藏的「數學腦」! 關鍵就在於「七個數學式思考原則」-- ◎「歸納整理」,讓你導出事物背後的隱藏訊息 ◎「順序概念」,讓決策和證明遵從邏輯、萬無一失 ◎「等價/因果轉換」能提升說服力、做出準確決定 ◎「抽象化」讓你看穿事物共通的本質、將複雜現實簡化成單純模式 ◎「具象化」讓想法、訊息傳達不失真、說服力大幅上升 ◎「逆向思考」讓你能以多元視角觀看事物,避開不必要的麻煩,發現解答就近在眼前。 ◎「發現並感受數學之美」,就能在必要時刻反射性的發揮「數學式思考」的力量。 從這七個面向進行腦內開發, 不論是誰都可以將從小到大學到的數學知識確實內化, 轉換成「可用的數學力」, 讓數學真正能夠實際應用到生活裡的各層面, 進而在工作、課業、家庭、人際關係上都獲得新的進展。 你以為數學好的人都是有天份嗎? 不要再說邏輯清晰的人都是有「數學天分」 因為每個人都有,只是你沒有把開關打開。 透過本書囊括各個領域豐富且貼近生活的實例, 你能發現數學原來可以這麼「實用」且「好用」。 一套前所未有的「數學發想術」, 讓你的邏輯思考力從「被動」進化到「直覺反射」, 發現自己原來也有一顆這麼好用的「數學腦」! 【第一章、喚醒你的數學力】 超數學式現代文解讀法 意識到數學力 【第二章、什麼是數學力?】 算術與數學是兩碼子事 任何人都具備的數學力 提升數學力的祕訣是停止背誦 讓靈光一閃成為必然的現象 【第三章、數理性思維的七個面向】 瞭解七個面向,激發內在數學潛能! 面向1 整理  給推理出隱藏性質的分類  為什麼血型占卜這麼受歡迎?  學習「圖形特性」的理由  在科學史上留下重要足跡的「數學式」分類  乘法式整理  次元增加,世界就會變寬廣  Will-Skill 矩陣  準備一份高效率的檢查表  ECRS 檢查表(改善四原則) 面向2 遵循順序  選擇時從大到小  必要條件和充分條件  合理選擇的原則  關於「證明」  正確的證明是由小到大  「風一吹,木桶店就會賺錢」是真命題嗎? 面向3 變換  換句話說  活用等價變換  理解函數  函數才是真正的因果關係  ①設想的「原因」是否為自變數  ②「原因」是否只對應到一種結果 面向4 抽象化  抽象化=推敲出本質  歸納出共通的性質  生活中隨處可見的抽象化  抽象化的練習  模式化  圖論  柯尼斯堡七橋問題  圖論的應用 面向5 具體化  提出具體實例  「譬喻」是具體實例的進化形  從名言當中學習如何創造貼切的譬喻  往返於具體與抽象之間演繹法和歸納法  演繹法和歸納法的缺點  適用演繹和歸納的情況 面向6 逆向思考  選平息怒火的ABC理論  逆、否、對偶命題  反證法  阿基米德與王冠  反證法的陷阱 面向7 培養數學的美感  指揮家的練習  古典音樂的特徵  和弦與和弦記號  數學和音樂的共通點  講求合理性  利用對稱性  追求一致性 後記 參考文獻 作者資料

    79 特價 237 立即購買 
  • 100件你不知道你不知道的事:日常生活裡的數學遊戲,藝術×運動×生物×宇宙×心理學……用數學來了解我們 100件你不知道你不知道的事:日常生活裡的數學遊戲,藝術×運動×生物×宇宙×心理學……用數學來了解我們 約翰.巴羅 臉譜文化 出版 2015/1/8出版

    ★「坦普頓獎」得主、《無限大的祕密》作者約翰•巴羅科普力作! 「人們不相信數學是簡單的,只因為他們不理解生命有多複雜。」──馮諾曼(John von Neumann) 為什麼另一排總是動得比較快? 一支鉛筆可以畫出多長的線? 用相對論來打橄欖球,行得通嗎? 別人的草地比較綠,這是錯覺嗎? 為什麼義大利麵總是斷成不只兩截? 一群猴子隨機胡亂打字,最終成了莎士比亞全集? 有沒有數學公式可以測定美學的品味、計算道德的高低? 如何用數學看穿一個人的心? 別懷疑,數學可以解釋我們的世界! 統計學家說一般人懂的字彙數量和莎士比亞差不多,他們是怎麼算出來的? 感情很好的兩人在第三人加入後出現裂痕,牛頓重力定律可以解釋這個難題? 豹紋也扯得上數學?為什麼身體多斑點的動物,尾巴卻是條紋狀? 簡單的問題很困難,困難的問題很簡單,這是什麼道理? 摺紙可以讓我們了解空間,放大紙張能讓我們認識宇宙? 史上最不可思議的足球賽是哪一場,竟然踢進自家球門才能晉級?! 喜歡三角形甚於五角形的總統證明了畢氏定理,數學幫了政治的忙! 這本資訊豐富、饒富趣味的著作,解答了100個上天下地的重要問題,用簡單的數學概念說明這些事物形成的原理。著名物理學家暨數學家巴羅帶領我們進行數學思考,一起用有趣的數學謎題來認識我們的世界。 從藝術賞析、運動競賽、逃離熊的攻擊、理財投資、決定吃肉還是吃魚、喝醉、離婚官司到會計醜聞,從混沌到無限,以及當中的所有事物,這本包羅萬象的精采著作為我們解答了一切。 序言 1 電塔是三角形的神聖圖騰? 2 為什麼走鋼索要拿著長竿? 3 猴子也能成為莎士比亞? 4 我們懂的字和莎士比亞一樣多? 5 用相對論來打橄欖球,行得通嗎? 6 超速照相機拍到的速度是前進速度的兩倍? 7 數學讓生活更簡單! 8 為什麼另一排總是動得比較快? 9 三人行不行?用牛頓重力理論解答就行! 10 這世界真小! 11 彌補落差:連伽利略都錯了的事! 12 要買多少張卡片才能蒐集到完整的球員卡? 13 用直線和對角線來數數? 14 你喜歡她,她喜歡他,他不喜歡你…… 15 如何用數學來賭馬? 16 重心愈低,跳得愈高? 17 表面積愈大愈好? 18 在無限久遠的未來,加值營業稅率會是多少? 19 我們生活在模擬情境中? 20 突現:個別元素的總和≠整體? 21 如何把一輛車推進車庫? 22 你愈來愈熱,我愈來愈冷? 23 醉漢走路路遙遙? 24 統計的迷思:隨機還是偽造? 25 平均數的缺陷:你贏我也沒輸! 26 宇宙摺紙術:對半切割紙片一百一十四次…… 27 簡單的問題很困難,困難的問題很簡單? 28 這是破紀錄嗎? 29 樂透可以DIY? 30 三根菸斗成難題? 31 灰塵為什麼是致命物質? 32 選祕書?用數學來挑就對了! 33 公平的離婚協議:雙贏其實並不難? 34 快樂報酬:兩人同一天生日的機率有多高? 35 為什麼三個葉片的風車比四個葉片好? 36 口語戲法:另外1英鎊到哪裡去了? 37 時間旅人如何理財投資? 38 如何組合不同面額的錢幣才是最佳策略? 39 小心平均先生和平均小姐! 40 事物可以存在多久? 41 喜歡三角形甚於五角形的總統! 42 破解口袋裡的密碼! 43 我很會記名字! 44 算術可以讓你長壽? 45 如何衡量鳥類或魚類俯衝時不同動作的速度? 46 數字定義了我們的人生? 47 需要多久時間,你的儲蓄才會加倍? 48 如何讓鏡中的影像上下顛倒? 49 福爾摩斯的對手是最惡名昭彰的數學家? 50 雲霄飛車與高速公路交流道有什麼關係? 51 量身訂做的炸彈? 52 請用走的,不要用跑的! 53 讀心術詭計:如何用數學看穿你的心? 54 騙子星球:說真的還是假的? 55 怎樣買樂透一定贏? 56 不可思議的足球賽:踢進自家球門才晉級?! 57 如何用減法來造物? 58 哪個數字最好用? 59 贏多少才算贏? 60 第一名變最後一名,最後一名成了第一名? 61 無中如何生有? 62 可能性的競賽:如何選到你要的選項? 63 鐘擺擺盪:物理學家的邏輯優於本能? 64 方形輪子的腳踏車可以騎嗎? 65 一間藝廊需要多少警衛? 66 如果是監獄呢……需要多少警衛? 67 用幾何學玩斯諾克? 68 你有多少兄弟姐妹? 69 有偏差的硬幣,得到沒有偏差的公平結果? 70 同義重複的驚奇! 71 數學拯救了太空災難? 72 打包行李也有最佳策略? 73 如何把東西裝進最少數量的箱子裡? 74 老虎!老虎!你到底能跳多高? 75 為什麼身體多斑點的動物,尾巴卻是條紋狀? 76 群眾的瘋狂:愈擠愈瘋狂! 77 鑽石鑽石亮晶晶,告訴我你為什麼那麼美麗? 78 機器人轉圈圈? 79 轉個彎想,答案就來? 80 在加勒比海Google!矩陣力量大? 81 為什麼掉錢的不快樂,大於撿到錢的快樂? 82 一支鉛筆可以畫出多長的線? 83 為什麼義大利麵總是斷成不只兩截? 84 小黃瓜美學:建築師也瘋狂? 85 用價格指數來決定吃牛肉還是吃魚? 86 無所不知反而是絆腳石? 87 為什麼人不能更聰明一點? 88 來自地下的人不迷路? 89 沒有無趣的數字? 90 用數學來隱姓埋名,怎麼做到的? 91 滑冰矛盾:不相干的事竟決定了成敗? 92 2的法則可以解答無限的祕密? 93 數學可以打破種族藩籬? 94 不順其自然也行? 95 可能性大集合! 96 無理好處多? 97 奇怪的公式:美學也可以用數學算出來? 98 混沌是科學的終點? 99 原來後排座位的旅客先登機根本沒道理? 100 一百人的地球村是什麼樣子? 註釋

    79 特價 277 立即購買 
  • 數學女孩:哥德爾不完備定理 數學女孩:哥德爾不完備定理 結城浩 世茂 出版 2012/4/26出版

    最受日本高校生喜愛の青春物語系列最新作!! 「數學是不完全的嗎?」 不斷地輪轉,不斷地更迭,這個季節。 看起來雖然很像,但卻不是單純的迴圈。 而是一邊重複一邊往上延伸的──螺旋…… 我和三個少女,逼近「不完全性定理」的真實, 如果是蒂蒂的話,就不會是由梨…… 魅惑而動人的數學物語。 在數學當中,雖然單純卻不明顯的定理或關係, 其數量確實多到叫人吃驚。 ……試想,在某種意義上,數學的這個性質不正好反映了 ──世界的秩序與規則性。 這個世界看起來比只作表面觀察的時候, 還來得更偉大,而這種偉大可說是無法比擬的。 ~哥德爾~ 隨著季節更迭,每當春天造訪時,我總會不斷地想起數學的種種。 在紙上記列著數學符號,試圖描繪出宇宙。 在紙上書寫下數學公式,試圖引導出真理。 隨著季節更迭,每當春天造訪時,我總會不斷地想起那些女孩們。 彼此切磋那些名為數學的詞彙, 在名為青春的時光裡,與我所邂逅的豆蔻年華的少女們── 我和三位青春少女的動人物語。 我之所以得以展翅飛翔,全源於一個渺小的契機…… ~謹此獻給哥德爾,以及世界上所有的數學家們~ 「數學是不完全的嗎?」逼近「不完全性定理」的真實,魅惑而動人的數學物語。 本書中出現有各式各樣的數學問題,從簡單到小學生都懂得的部分,至困難到會嚴重動搖整個數學界的世紀難題都有。 除了使用語言及圖形來表現故事主人翁的思考脈絡之外,另也會使用到數學公式來做表達。 每當遇有無法理解數學公式涵義的時候,請不妨先跳過卡住的數學公式,暫且隨著故事的情節發展往下走。蒂蒂和由梨會陪伴著你一起往前走。 而對數學有自信的讀者們,在享受故事情節之餘,也不要忘了動動腦挑戰看看書中的數學公式哦!如此一來,你將可以體味到隱藏在故事背後的其他趣味。 或許,聰敏的你能超越那些數學天才們,挖掘出的不為人知的祕密噢!

    7 特價 279 立即購買 
  • 一條線有多長?:生活中意想不到的116個數學謎題 一條線有多長?:生活中意想不到的116個數學謎題 傑瑞米.溫德漢 臉譜文化 出版 2014/11/4出版

    ★116個隱藏在日常生活中,有趣又好玩的數學謎題! 暢銷作家、猜謎大師聯手,開創數學科普書寫作新風格! 為什麼這麼快又到星期一? 明明是兩個選一個,為什麼機率不是五五波? 明年冬天,我會感冒嗎? 電梯怎麼等這麼久還不來,走樓梯會不會比較快? 為什麼卡拉OK的歌聲這麼難聽? 我們的生活裡原來處處隱藏了數學魔術, 讓人驚呼「數學真是太有用、太有趣了」! 你知道嗎?荒腔走板的歌聲也有可能是天籟美聲!利用數字1就能看破騙術,而且1%也能變成50%,還有堅守「37%原則」就可以覓得佳偶! 你有沒有想過,為什麼一星期有七天?為什麼球員變強了,比賽卻輸了?八卦新聞為什麼散佈那麼快?為什麼頭彩得主很少獨贏?……在我們的生活裡,其實隨處是這些有趣的數學謎題。 本書兩位作者是熱愛猜謎及解決數學問題的暢銷書作家,而各行各業的專家也為本書助了一臂之力,例如知名的電梯公司主管解釋電梯升降的邏輯、倫敦運輸局專家揭開計程車表的奧祕,以及其他諸如手稿鑑定專家、傳染病醫療專家、流行音樂界專業人士等,讓本書具高度的娛樂性,同時提供權威的科普知識。 在日常生活中解答數學謎題,趣味橫生、驚奇不斷! 推薦序 在熟悉的情境中學習數學 洪萬生 自 序 所有人都可以成為數學家 第1章 為什麼這麼快又到星期一? 「星期」是怎麼來的?╱一年為什麼有十二個月?╱月亮「看」起來有多大?╱哪幾顆行星決定一星期有七天?╱「過剩數」與「完全數」是什麼?╱佛羅倫斯的一星期有八天?╱為什麼Monday是星期一? 第2章 如何拆穿王牌大騙子? 免費買戒指,還倒賺一百鎊?╱預言嬰兒性別的神棍如何騙錢?╱為什麼滿杯等於空杯?╱如何戳破email詐騙手法?╱是誰少給了服務生小費?╱如何破解金字塔傳銷的騙局?╱金字塔傳銷差點毀掉一個國家?╱真的有人在騙局中贏到錢嗎? 第3章 暢銷單曲是怎麼來的? 有沒有打造暢銷單曲的祕訣?╱為什麼我們愛聽節奏?╱什麼是「莫札特效應」?╱流行歌曲有沒有公式?╱為什麼偶數音比奇數音更性感?╱曲調有沒有寫完的一天?╱麥可‧傑克森的音樂是粉紅色? 第4章 為什麼行李擺不進後車廂? 如何在方形中放入最多圓形硬幣?╱水果攤老闆該如何堆疊柳橙?╱搬家時,有沒有最佳的行李打包術?╱為什麼戲院觀眾有人坐走道、有人坐後排?╱如何最快進入捷運車廂?╱男人如廁,離陌生人愈遠愈好? 第5章 我該回答問題嗎? 要拿錢走人或賭下去?──機智問答節目中的兩難╱二中取一的術語有哪幾種?╱如何先搶到《百萬富翁》參賽權?╱如何找出最佳的團隊猜題策略?╱什麼是《最弱環節》團隊遊戲的推薦戰術?╱明明是兩個選一個,為什麼機率不是五五波? 第6章 走樓梯會不會比較快? 電梯業者關心速度甚於安全?╱電梯等多久會開始不耐煩?╱如何縮短電梯的等候時間?╱如何計算建築物需要幾部電梯?╱讓電梯加速就能服務更快嗎?╱如何估計電梯的停靠次數?╱為什麼有些電梯會反方向行進?╱電梯為什麼不理你?╱慢速電梯讓乘客更滿意? 第7章 一條線有多長? 多瑙河有多長?╱「一條線有多長?」有幾種不同答案?╱碎形是什麼?能產生哪些奇妙的圖像?╱數字中也藏有驚人的碎形?╱碎形如何讓網路圖片傳遞更快?╱學會碎形,有可能大賺一票?╱邊界無限長,面積也會無限大嗎? 第8章 為什麼天氣預報會出錯? 撞球開球時,要靠技術還是靠運氣?╱為什麼球員變強了,比賽卻輸了?╱鐘擺玩具可以預測結果嗎?╱電腦如何模擬擲骰子的隨機結果?╱為什麼蝴蝶一拍翅,佛羅里達就颳颶風? 第9章 明年冬天,我會感冒嗎? 老鼠如何害死四分之一的歐洲人?╱八卦新聞為什麼散佈那麼快?╱傳染病的散佈情況與謠言類似?╱不同傳染病的傳染威力相同嗎?╱如何精準估算傳染病感染人數?╱利息支付間隔愈短,獲利愈高?╱為什麼狂牛症的預估死亡人數差這麼多?╱隔離是阻斷傳染病散佈的最佳方式?╱電腦病毒也在模仿傳染病嗎? 第10章 我搭計程車時有沒有被佔便宜? 連計程車司機都不瞭解計程表的祕密?╱如何計算一個都市的平均車速?╱慢速行駛高速公路,車資會變多?╱什麼樣的計程車費率可以防弊?╱計程車司機怎樣可以讓收入提到最高?╱兩點間最短距離非直線? 第11章 我究竟會不會遇上完美伴侶? 下一個男人(或女人)會更好?╱堅守「37%原則」可以覓得佳偶?╱如何算出你的婚姻承諾恐懼症指數?╱婚姻介紹所總是所配非人?╱有尋覓完美配偶的數學方法嗎? 第12章 這是一場騙局嗎? 利用數字1就能看破騙術?╱用數學也能偵測騙局?╱「班佛定律」為什麼能有效抓出造假數字?╱太一致的統計數字反而不正常?╱如何抓出誰向新聞界洩密?╱有些劇本其實不是莎士比亞寫的?╱如何揭穿學生是否考試作弊?╱活用統計法也能贏得芳心?╱還有多少詐欺事件逍遙法外? 第13章 弱者能贏嗎? 出現精彩賽事的關鍵是什麼?╱為什麼弱方不會永遠屈居劣勢?╱保持領先未必能贏得比賽?╱落後選手扭轉頹勢並領先對手的機率有多高?╱如何訂定既公平又精彩的比賽順序?╱如何快速計算淘汰制錦標賽所需的比賽場次? 第14章 為什麼卡拉OK的歌聲這麼難聽? 為什麼有些聲音聽不到?╱耳朵怎麼分辨出「難聽」與「悅耳」?╱如何奏出好聽的組合音?╱以噪音剋制噪音,真的有效?╱和諧音的規則是用鎯頭敲出來的?╱十二音是怎麼來的?╱史上最早的音階系統是什麼?╱世上真有魔鬼音?╱荒腔走板的歌聲也有可能是天籟美聲? 第15章 我能百分之百肯定嗎? 繪製地圖最少需要幾枝色筆?╱如何分辨數學家和工程師之間的差異?╱有辦法最快找出成雙的襪子嗎?╱為什麼頭彩得主很少獨贏?╱若矛盾則為真?╱連電腦也算不出的答案,人腦有辦法?╱數學家至死不改的癖好……?╱永遠蓋不滿的棋盤?╱哪個定理被證明得最透徹? 第16章 我能相信報紙嗎? 銷售數字變漂亮了?╱政客最愛玩哪些數字花招?╱百分比是最好的魔術技倆?╱1%也能變成50%?╱平均數有三種?╱哪一種平均數才平均?╱圖表有可能完全違背事實?╱你被公式唬了嗎?

    79 特價 221 立即購買 
  • 毛起來說無限 毛起來說無限 毛爾 天下文化 出版 2014/2/27出版

    一條線段或一個量可不可以一直分割下去,近代物理學家建造粒子加速器想尋找「基本粒子」,宇宙的邊界在哪裡,讓梵谷說出「我在凝視無窮」的法國原野…… 不管是無窮小、無窮多或無限延伸,「無限、無窮」這個概念深深吸引了從古至今的思想家、藝術家、科學家。《毛起來說無限》是以數學家的觀點,講述有關無窮的故事,而你也會發現:原來數學是研究無窮的科學。 序 第一部 數學的無窮 1. 邁向無窮的第一步 2. 成為正式的數學 3. 收斂與極限 4. 無窮級數的魅力 5. 幾何級數 6. 再談無窮級數 7. 插曲:數的觀念之旅 8. 發現無理數 9. 康托的新觀點 10. 超越無窮 第二部 幾何的無窮 11. 一些函數及其圖形 12. 對單位圓的反轉 13. 地圖與無窮遠點 14. 平面鋪磚 15. 新角度看幾何 16. 遍尋不著的絕對真理 第三部 美學的無窮 17. 享受無窮! 18. 莫比烏斯紐帶 19. 鏡子裡的奇妙世界 20. 對無窮的愛 21. 無窮大師:艾雪 22. 現代神祕主義者 第四部 宇宙的無窮 23. 古代世界 24. 新宇宙觀 25. 漸行漸遠的天際線 26. 一個弔詭及其餘波 27. 不斷擴張的宇宙 28. 現代的原子論者 29. 往後會到哪裡去? 結語 附錄

    75 特價 248 立即購買 
  • 數學的語言 數學的語言 齊斯.德福林 商周出版 出版 2011/3/3出版

    《經濟學人》(The Economist)、《科學美國人》(Scientific American)、《出版人週刊》(Publishers Weekly)一致推薦!全球銷量逾百萬冊! 2004國際畢達哥拉斯獎、2007卡爾.沙根科普獎得主最新力作,台師大數學系洪萬生教授領軍翻譯。 數學,是一切科學學習的基礎。 唯有數學,才能顯現萬物背後隱藏的真理。 一切都不只是數目而已。瞭解數學,從這裡開始。 在古埃及和巴比倫時期,數學只是有關數目的學問。古希臘的數學家關心起幾何學,數學開始和形狀有關。十七世紀中葉,牛頓和萊布尼茲分別發明微積分,數學變成了研究數目、形狀、運動、變化及空間的一門學問。時至今日,它已是一個包含六、七十個不同範疇的龐大知識體系。 講起數學,絕大多數人腦中浮現的,不是艱澀難懂的公式,就是死記硬背的痛苦體驗。數學其實是一種模式的科學,是我們看待世界,包括外在的物理、生物與社會世界,以及內在心靈世界的一種方式。傑出的英國數學家哈代(G. H. Hardy)說:「數學家的模式,就好比畫家或詩人的模式一樣,必須是美的;其理念就像色彩或文字一樣,必須按和諧的方式安排在一起。」 所以,數學是美的,而那種美隱藏在數目、點、線與面、幾何圖形、函數等符號中。是什麼東西讓一架巨型噴射機能浮在空氣中?是什麼原因促使飛行器以外的物體墜地?數學讓那些看不見的變得可見,數學要用證明的確定性,勾勒出真理的恆久。 從古典數學(代數)到現代語言分析,從幾何學、微積分到拓樸學、統計學及物理學,本書將揭示我們如何用數學去看見那些不可見的結構,去理解生活周遭的諸多現象。你可能會發現你所遭遇到的視界既怪異又陌生,就像那些遙遠的土地一樣。但那並不是一個遙遠的地方,那是我們居住的宇宙。 伽利略曾說:「自然這部大書只能被那些通曉其中所寫語言的人閱讀。這個語言正是數學。」就讓本書作者德福林,這位精通數學語言的導師,帶領各位從頭、重新認識這門瑰美的學問。 本書特色 敘述俐落簡潔、不拖泥帶水,清晰道出數學的面貌。 涵蓋諸多數學重要領域及概念,能同時滿足高中生、大學生與社會人士的需求。 講述數學理論之美,是學生必備的經典案頭書籍! 不只可以認識到一般數學書籍都有提及的代數、微積分、幾何學、拓樸學,還能看到數學在統計學、物理學及語言學上的應用,更能對數學從古至今的發展歷史瞭然於胸。 道出數學的本質,讀者對其能有最深刻的認識,日後學習各項定理及觀念,可以更容易上手,不易再為數目等符號所累,而喪失了體會數目、形狀、運動、變化、空間之美的機會。 The Economist、Scientific American、Wired、Publishers Weekly一致鄭重推薦! 作者為史丹佛大學資深教授,曾獲2004國際畢達哥拉斯獎、2007卡爾.沙根科普獎。 由台師大數學系洪萬生教授領軍翻譯。 藉由觀看數學如何協助邏輯學、語言學、統計學、物理學等學科建立理論,讀者可以獲得學習科學各學門的重要基礎,在理科領域無往不利。前言 序曲 何謂數學? 第一章 數目為何靠得住? 第二章 心智的模式 第三章 動靜有數 第四章 當數學成型 第五章 數學揭開美之本質 第六章 當數學到位 第七章 數學家如何決疑 第八章 數學揭開宇宙的深層模式 後記 索引

    79 特價 435 立即購買 
  • 為什麼公車一次來三班?:生活中隱藏的81個數學謎題 為什麼公車一次來三班?:生活中隱藏的81個數學謎題 羅勃.伊斯威 臉譜文化 出版 2014/10/2出版

    ★等公車、買樂透、約女友、洗熱水澡、切蛋糕…… 81個有趣又好玩的數學謎題,驚奇不斷的科學之旅! 為什麼公車一來就是三班,而且總是看到公車朝反方向離去? 為什麼永遠找不到四葉幸運草,這個自然界的數學大驚奇有什麼奧祕? 星期幾買樂透最容易中,有沒有逢賭必贏的玩法? 怎樣切蛋糕最公平,一個簡單的動作隱含了哪些數學原理? 巧合真的很巧嗎,沒引起注意的巧合事件到底有多巧? 在日常生活中發現全新的觀察角度,數學讓生活變得更有趣! 你是否想過,為什麼公車常常一次就來三班?為什麼福無雙至,卻禍不單行?越是趕時間,為什麼越容易遇到紅燈?想約心儀的女孩,怎樣才能超越競爭者贏得佳人芳心?……我們都對這些事感興趣,卻不知道這些都可以應用數學來解釋。 機率、正切、π、矩陣、質數……,這些讓大家傷透腦筋的數學原理及定律,真的那麼難親近嗎? 本書的數學並不只是用來解答問題,而是提供一種嶄新的領悟,並激發你的好奇心。賭博、旅行、約會、烹飪,甚至下雨時決定要不要奔跑,都和數學有關。當本書揭開了數學這個優雅迷人的奇妙世界,無論你的數學功力如何,都會改變你對周遭世界的看法。 在生活中發現意想不到的樂趣,原來數學這麼有趣! 【名家好評推薦】 「一般人對於學校數學的習焉而不察,部分原因可能是數學知識與日常生活的連結,沒有受到足夠的強調與重視。想必有鑑於此吧,本書作者由此切入,這當然也解釋何以本書各章標題如此引人入勝……總之,這是一本輕薄短小、內容合宜的數學科普著作。由於它的知識門檻不高,所以,我相信只要讀者有一點點『知識獵奇』的心情,就一定會愛不釋手的。」 ──臺灣師範大學數學系退休教授 洪萬生 【作者著作延伸閱讀】 ●《一條線有多長?:生活中意想不到的116個數學謎題》 為什麼這麼快又到星期一?明明是兩個選一個,為什麼機率不是五五波?為什麼球員變強了,比賽卻輸了?八卦新聞為什麼散佈那麼快?為什麼頭彩得主很少獨贏?……116個隱藏在日常生活中,有趣又好玩的數學謎題!暢銷作家、猜謎大師聯手,開創數學科普書寫作新風格! ●《幾隻襪子湊一雙?:生活中超級有趣的12個數學謎題》 多少隻襪子才能湊成一雙?這個問題的數學法則和打破墨菲定律有什麼關係?離開又走回帳篷的人看見一隻熊,可以用數學來解答這隻熊是什麼顏色嗎?紙牌、一只信封套背面、一則數獨、一些銅板,當然還有一雙襪子,從最平凡的日常用品中展現數學的神奇之美! 羅勃‧伊斯威(Rob Eastaway)、傑瑞米‧溫德漢(Jeremy Wyndham)◎著 蔡承志◎譯 推薦序 數學知識果然非常有用! 洪萬生 序 生活種種全都有數學 Tim Rice 緒 論 把數學帶回日常現實生活 第1章 為什麼永遠找不到四葉幸運草? 第2章 走路也有大學問! 第3章 問卷調查的真相 第4 章 聰明人也會做錯事? 第5章 怎麼下賭注,勝算最高? 第6章 巧合真的很巧嗎? 第7章 從哪個角度撞球才容易入袋? 第8章 密碼攻防戰 第9章 為什麼公車一次來三班? 第10章 怎樣切蛋糕最好? 第11章 不作弊要怎樣贏? 第12章 誰是世界冠軍選手? 第14章 第13章哪裡去了? 第15章 誰是殺人兇手? 第16章 真衰,又碰上塞車了! 第17章 為什麼淋浴時水溫不是過熱就是過冷? 第18章 如何準時上菜? 第19章 六種逗小孩高興的神奇把戲!

    79 特價 221 立即購買 
  • 我也有聰明數學腦:15堂課激發被隱藏的競爭力 我也有聰明數學腦:15堂課激發被隱藏的競爭力 盧采嫻 橡樹林文化出版 2014/5/15出版

    學習效率、理財能力、空間掌控力、 判斷力、組織分析力、邏輯推理力…… 越早強化數學腦, 就越早擁有人生勝利組的入場券! 破除以下五大迷思 數學不好就沒有數學腦(錯) 計算能力就代表數學能力(錯) 數學腦只能運用在考試上(錯) 數學腦跟生活與職場毫無關係(錯) 數學腦開發只限於孩童時期(錯) 5大特點,強化數學腦,激發潛力! 15堂課,每堂都是圖解與遊戲!! 善用「七覺」,提升效率! 不受時間、空間、年齡限制 同時強化左右腦開發 擺脫對公式的恐懼! 「數學腦」並不只是計算力或是數理成績的表現,而是人人都擁有的特質、一種能力。 事實上,「數學腦」影響的領域包括了我們的學習速度、理財觀念、空間掌控能力、判斷事物能力、組織分析能力等,是足以影響我們是否能成為職場常勝軍、人生勝利組的重要能力。 本書將藉由簡單的遊戲激發你被隱藏已久的數學腦潛力,書中的詳細圖解與相關練習更能讓你藉由循序漸進的步驟,找出自己沒發現的盲點,全面提升你的競爭力和優勢力。 各方推薦語 自序 PART1 我思故我在,每個人都有數學腦 數學腦是啥玩意? 即便數學不好,也能有數學腦 數學腦在日常生活中的息息相關 PART2越早培養,越有效益 擁有孫悟空的火眼金睛 聽見風在唱歌的聲音 品嘗新鮮天然的真實滋味 嗅聞花園中的萬紫千紅 撫摸草地的柔軟與樹皮的粗曠 追趕跑跳碰,動動全身的筋骨 從心感受世界的美好與躍動 數學腦零極限之效率訓練 骰子圈圈樂,你有多少點? 電視機拼圖,你看哪一台? 蔬果派對大放送,你是哪隊? 3D立體空間,你在哪一邊? 美美種花,怎麼種最漂亮? 數學腦零極限之分析訓練 向左走,向右走,誰的家最遠? 找找看,它們的影子在哪裡? 睜大眼睛看一看,問題在哪裡? 一個蘋果有多重?從秤秤看到試試看 換換看,有多少種排列? 數學腦零極限之解構訓練 神奇小風箏,到底有多少種可能? 下午茶點心,每天都有小確幸! 國際太空航線網,找出正確的對應者 鐵扇公主的通關密語,哪個才是正確的? 乾坤大挪移,在限制中完成任務

    79 特價 221 立即購買 
  • 千年難題:七個懸賞一百萬美元的數學謎題 千年難題:七個懸賞一百萬美元的數學謎題 齊斯.德福林 稻田 出版 2013/12/12出版

    二○○○年,美國麻塞諸塞州劍橋的克萊數學促進會發起了一場頗具歷史意義的競賽:任何能夠解決七大數學難題之一的人,在專家認定其解答正確之後,將可以獲得一百萬美元的獎金。在此之前,也有過這樣的先例:一九○○年,當時最偉大的數學家之一希爾伯特,提出了二十三個問題(現被稱作希爾伯特問題),在很大程度上為二十世紀的數學發展設下了決定性的里程碑。 本書所討論的這七大千年難題很可能將獲得同樣的地位。對它們的解答(或者解答不出)將對二十一世紀的數學研究產生巨大的影響。這些問題涉及純粹數學和應用數學中最迷人的領域:從拓撲學和數論,到粒子物理學、密碼學、計算理論,甚至於飛機設計。德福林在本書中,用深入淺出的方式,為我們講解這七大難題的內容、由來以及它們對數學和科學的意義,讓非具有專業數學素養的大眾讀者,也能一窺這場數學界的極限任務之堂奧! 本書特色   ★亞馬遜四顆星推薦 ★《學校圖書館期刊》(School Library Journal)、《書評人》(Booklist)、《自然》(Nature)一致推薦! 序言 第0章 挑戰已經發出 第1章 素數的音樂:黎曼假設 第2章 構成我們的是場:楊-米爾斯理論和質量缺口假設 第3章 當電腦無能為力的時候:P對NP問題 第4章 製造波動:納維-斯托克斯方程 第5章 關於光滑行為的數學:龐加萊猜想 第6章 解不出方程也明白:伯奇和斯溫納頓-戴爾猜想 第7章 沒有圖形的幾何學:霍奇猜想 進一步的讀物

    79 特價 221 立即購買 
  • 微積分的歷史步道(二版) 微積分的歷史步道(二版) 蔡聰明 三民 出版 2013/6/14出版

    微積分如何誕生?微積分是什麼? 微積分研究兩類問題:求切線與求面積,分別發展出微分學與積分學。 微積分最迷人的特色是涉及無窮步驟,落實於無窮小的演算與極限操作,所以極具深度、難度與美。 從古希臘開始,數學家經過兩千年的奮鬥,累積許多人的成果,到了十七世紀,終於由牛頓與萊布尼茲發展出微分法並且看出微分與積分的互逆性, 從而揭開求切、求積、求極、變化與運動現象之謎,於是微積分誕生。 講述這段驚心動魄的思想探險之旅,就構成了本書的主題。

    79 特價 253 立即購買 
  • 數學之書 數學之書 柯利弗德.皮寇弗 時報文化 出版 2013/1/8出版

    史上最強、科普界全能鬼才皮寇弗力作 趣味故事+詳解數理公式+實際應用法則 從閱讀中體會數學妙用無窮 一本圖文並茂的數學百科/一本博古通今的數學歷史 一本趣味橫生的數學故事/一本條理分明的數學資料庫 關於數學世界裡最重要、最有趣的故事盡在其中 本書特色 1.豐富條目:250項數學史上重大里程碑一次收錄。 2.編年百科:條目依年代排序,清楚掌握數學發展演變。相關條目隨頁交叉索引,知識脈絡立體化。 3.濃縮文字:每篇700字左右,快速閱讀、吸收重要數學觀念和大師理論。 4.精美插圖:每項條目均搭配精華全彩圖片,幫助記憶,刺激想像力。 5.理想收藏:全彩印刷、圖片精美、收藏度高,是科普愛好者必備最理想的數學百科。 數學如何解釋夕陽餘暉的色澤?各文明的算術系統有何分別?魔術方塊是如何誕生的?數學歷史上各項重大的數學原理如何幫助我們探索世界? 知名的計算公式及數學觀念總是伴隨許多數學家一生中各種奇妙的故事,特別是在現實世界裡實際運用這些數學定理時。跟著皮寇弗的這趟旅程,我們將一同穿梭數學史上二百五十個重大成就,像是螞蟻身上的計數「里程表」、人類史上的第一把算盤、發現電腦創造的碎形以及探索新空間維度的過程。這趟旅程將拜訪古代名聞遐邇的思想大師如畢達哥拉斯跟歐幾里德,也將見識到賈德納能及宇宙論大師馬泰格馬克這些近代的數學巨擘。 依照時間先後順序排列,每個條目都簡短到能在幾分鐘內消化吸收,一旁更附上令人炫目的全彩圖案。 本書作者皮寇弗表示:「對我而言,不論是心智的特質、思想的極限,或者是人類相對於浩瀚宇宙當中的所處環境,都可以用數學來發掘當中永無止盡的驚奇奧祕。」螞蟻的里程表(約西元前一億五千萬年)、魔術方陣(約西元前2200年)、畢氏定理(約西元前600年)、季諾悖論(約西元前445年)、歐幾里得《幾何原本》(西元前300年)、算盤(約西元1200年)、黃金比例(西元1509年)、對數(西元1614年)、滑尺(西元1621年)、巴斯卡三角形(西元1654年)、發現微積分(約西元1665年)、常態分佈曲線(西元1733年)、代數基本定理(西元1797年)、重心微積分(西元1827年)、莫比烏斯帶(西元1858年)、黎曼假設(西元1859年)、質數定理的證明(西元1896年)、毛球定理(西元1912年)、混沌理論與蝴蝶效應(西元1963年)、模糊邏輯(西元1965年)、魔術方塊(西元1974年)、碎形(西元1975年)、NP完備的俄羅斯方塊(西元2002年)、破解西洋跳棋(西元2007年)、數理宇宙假說(西元2007年)……共250則

    79 特價 458 立即購買 
  • 數學悖論集錦 數學悖論集錦 九章出版社 九章 出版 2009/11/12出版

    邏輯學是一切演繹推理的基礎,也是學好數學的基本能力。本書的主要目的是透過有趣的例子,通過提出現代邏輯學中最重要的一些悖論來釐清邏輯學的基本概念。 本書的章節分為邏輯學悖論、概率論悖論、數學悖論、幾何的?論、統計的悖論、時間的悖論,利用一些小故事作階梯引導學生深入到數學較深奧的內容中,使學生對數學有更清晰的理解。本書是數學教師、數學愛好者必讀的好書。

    79 特價 158 立即購買 
  • 給青年數學家的信 給青年數學家的信 Ian Stewart 聯經 出版 2008/1/30出版

    伊恩‧史都華的成就令人驚歎不已,他是一流的數學研究者、《美國科學》(Scientific American)前專欄作家、沃維克 (Warwick)大學的數學中心主任,還寫了五十多本書,內容從尖端數學到猜謎遊戲到科幻小說不等。 本書告訴讀者,作者希望自己在學生時代就能領悟哪些道理。書中討論的主題範圍廣泛,從哲學面到實務面,例如數學是什麼、為何數學值得投入、邏輯與證明的關係、數學思路中美感所扮演的角色、數學的未來、如何看待數學圈中的奇人異事等等。 本書寫作風格迷人,結合了輕鬆隨意的微妙幽默以及直指事情本質的敏銳才華。 本書是「基礎書籍」中的第一本科學入門書,也是「導師的藝術」系列。本書眼光獨到,以生動活潑的方式解釋數學為何很重要。本書適合各個階段的學生,也適合對迷人卻神祕的數學世界感到好奇的人士。 本書特色 ◎本書為給青年的人的信系列,邀請不同領域的專家或是參與者分享自己的經驗,提供對該領域有興趣、甚至將之視為人生志業的青年一些幫助。 ◎本書作者:史都華(Ian Stewart)曾有二本著作在台灣有中譯本(皆由天下文化發行): (2000)《生物世界的數學遊戲》 Life's Other Secret (1996)《大自然的數學遊戲》 NATURE'S NUMBERS 《生物世界的數學遊戲》一書更曾獲2001年中國時報開卷一週好書推薦 《大自然的數學遊戲》獲 ‧1996年聯合報讀書人每週新書金榜 ‧1996年入選香港暢銷書排行榜 ‧1996年Rhone Poulenc Science Book Prize Shortlisted 前言 第一章 為何學數學? 第二章 我幾乎成了律師 第三章 數學的廣度 第四章 一切不都已做完了? 第五章 被數學包圍 第六章 數學家如何思考 第七章 如何學習數學 第八章 對證明的恐懼 第九章 電腦是否可以解決一切? 第十章 陳述數學故事 第十一章 全力以赴贏得勝利 第十二章 耗大的工程 第十三章 無解的問題 第十四章 職業生涯 第十五章 純數或應數? 第十六章 你從何處得到那些瘋狂的想法? 第十七章 如何教數學 第十八章 數學社群 第十九章 豬和卡車 第二十章 合作的樂趣和風險 第二十一章 上帝是數學家嗎?

    79 特價 198 立即購買 
  • 黎曼猜想漫談 黎曼猜想漫談 盧昌海  五南 出版 2015/1/25出版

    數學家黎曼在1859年發表了一篇疑問,對於數字中的質數提出了一個假設, 這個猜想在黎曼生前未能得到證實,一直到黎曼離世後也仍未停歇。 黎曼仿佛只是向數字的湖水中丟進了一顆石頭,卻引起了久久長長的漣漪。 許多數學家朝著這個方向討論與追尋,像是一場大隊接力般。 幾個世代的數學家們不斷地接棒、奔跑,只為接近這個可能的定理。 本書從哈代寄給波耳的一張明信片講起, 和黎曼猜想同時代的數學家們一起出發, 記錄了他們走在這條路上的軌跡,以及他們身上的趣事。 1 哈代的明信片  2 黎曼ζ 函數與黎曼猜想  3 質數的分佈  4 黎曼的論文—— 基本思維  5 黎曼的論文—— 零點分佈與質數分佈  6 錯釣的大魚  7 從零點分佈到質數定理  8 零點在哪裡  9 黎曼的手稿  10 探求天書  11 黎曼—— 西格爾公式  12 休閒課題:圍捕零點  13 從紙筆到機器  14 最昂貴的葡萄酒  15 更高、更快、更強  16 零點的統計關聯  17 茶室邂逅  18 隨機矩陣理論  19 蒙哥馬利—— 歐德里茲科定律  20 希爾伯特—— 波利亞猜想  21 黎曼體系何處覓  22 波耳—— 蘭道定理  23 哈代定理  24 哈代—— 李特爾伍德定理  25 數學世界的「獨行俠」  26 臨界線定理  27 萊文森方法  28 艱難推進  29 哪裡沒有零點  30 監獄來信  31 與死神賽跑的數學家  32 從模算術到有限域  33 「山寨版」黎曼猜想  34 「豪華版」黎曼猜想  35 未竟的探索 附錄A 尤拉乘積公式  附錄B 超越ZetaGrid  附錄C 黎曼猜想大事記

    79 特價 221 立即購買 
  • 普通數學 普通數學 林原宏、易正明、林炎全等 五南 出版 2014/9/22出版

    本書可做為國小師資培育課程教科書和自習用書,我國國小師資培育逐漸關注教師數學教學專業能力,且教師的數學能力會影響其數學教學專業表現。本書基於世界各國國小職前教師專業能力的培育趨勢,內容旨在提升國小職前教師的數學能力,期能將數學能力轉換為數學教學專業能力的基礎。本書編排重視數學概念的邏輯陳述,由淺入深構築數學知識,為國小師資培育的重要用書。 第1章 基礎邏輯與集合 1.1 邏輯符號 1.2 有效論證 1.3 集合 1.4 集合的基本運算及其性質 第2章 數系 2.1 整數系 2.2 有理數系 2.3 實數系 第3章 數的計算 3.1 數的運算 3.2 數的次序性質 3.3 因數、倍數、質數、最大公因數與最小公倍數 第4章 坐標系統 4.1 坐標系 4.2 直角坐標平面 4.3 區間 4.4 方程式和圖形 4.5 二元一次聯立方程式的圖形 4.6 二次方程式的圖形 4.7 定義域、值域 4.8 空間概念 4.9 空間坐標系 第5章 多項式 5.1 多項式 5.2 簡化代數式、多項式之四則運算 5.3 因式分解、餘式定理 5.4 四代數分式、代數分式的四則運算 第6章 函數 6.1 函數的定義 6.2 函數符號 6.3 合成函數 6.4 反函數 6.5 多項式函數 第7章 直線方程式(含不等式) 7.1 距離公式 7.2 座標系直線 7.3 二元一次方程式(直線方程式) 7.4 二元一次聯立方程式 7.5 不等式 7.6 方程式和圖形 第8章 曲線方程式 8.1 一元二次方程式 8.2 二次函數 8.3 三次式的性質 第9章 空間中的平面與直線 9.1 空間概念 9.2 空間向量的內積 9.3 外積、體積及行列式 9.4 平面方程式 9.5 空間直線方程式 第10章 證明 10.1 算術和代數的論證 10.2 證明法 10.3 古典平面幾何定理 第11章 幾何圖形 11.1 平面知己和圖形與其對應的度量 11.2 空間形體 第12章 解析幾何 12.1 扇形的弧長與面積 12.2 圓 第13章 級數 13.1 數列 13.2 級數 第14章 指數函數、對數函數 14.1 指數表徵 14.2 指數函數 14.3 對數函數 第15章 排列與組合 15.1 加法原理與乘法原理 15.2 直線排列 15.3 重複排列 15.4 環狀排列 15.5 相異物組合 15.6 重複組合 15.7 二項式定理 15.8 二項係數的性質 15.9 加法原理的一般化—排容原理 第16章 機率與統計 16.1 機率的定義與性質 16.2 機率性質與定理應用 16.3 敘述統計與統計量數 16.4 變數分類與統計圖表 第17章 三角函數 17-1 銳角三角函數 17-2 廣義角與極坐標 17-3 正弦定理與餘弦定理 17-4 差角公式 17-5 三角測量

    9 特價 486 立即購買 
  • X的奇幻旅程:從零到無限的數學 X的奇幻旅程:從零到無限的數學 史帝芬.斯托蓋茨 五南 出版 2014/5/25出版

    你知道要和多少人交往才能找到真愛嗎? 辛普森真的殺了他的妻子嗎? 麥可喬丹真的能在空中停留嗎?    數學,是一切問題的解答。 一位世界級的數學家兼《紐約時報》的專欄作家,將帶領我們展開一場愉快的旅程,探索數學界的重大觀念,同時讓我們看到數學和其他領域間令人意想不到的關連,從文學、哲學、法律、醫學、藝術、商業一路探索到流行文化。 辛普森真的是兇手嗎?應該要如何翻轉床墊才能得到最大效益,盡可能延長使用期限?Google是如何在網路上搜尋的?在你決定終身伴侶前應該要和多少人交往?不管你信不信,數學在這些問題中扮演著關鍵的角色。 數學是宇宙萬物的基礎,包括你我在內,但很少有人通曉這套世界性的語言,並且能夠揭露出當中的智慧、美麗 和樂趣。本書深具啟發性和娛樂性的書寫方式將數學搖身一變,改造成一場寓教於樂又驚險刺激的旅程。《X的樂趣》的每一章都為人帶來豁然開朗的喜悅,從為什麼數字對我們有幫助,到隱含在π、畢氏定理、無理數、長尾中的奇妙真理,甚至連艱深的微積分看起來都具有獨特的魅力。身為頻頻獲獎的康乃爾大學教授,斯托蓋茨在《紐約時報》的數學專欄大獲好評,他將讀者設定為只具有好奇心和常識的人,因此他以清楚、機智的筆調來撰寫這些文章,時而搭配上有趣幽默的解釋,展現出數學這門專業科目中最重要、最激動人心的種種原則。 不管你是精通微積分的數學高手,還是連整數都搞不清楚是什麼的數學白痴,都能在《X的樂趣》中獲得深刻的啟發和數不盡的樂趣。第一部 數字 第一章 從魚到無限 第二章 一堆石頭 第三章 我敵人的敵人 第四章 換算 第五章 讓人抓狂的除法 第六章 位置、位置、位置 第二部 關係 第七章 X的樂趣 第八章 尋找你的根 第九章 滿出來的浴缸 第十章 二次方程式 第十一章 強大的工具 第三部 形狀 第十二章 方塊舞 第十三章 無中生有 第十四章 圓錐的陰謀 第十五章 必要條件 第十六章 極限 第四部 改變 第十七章 改變我們所能相信的 第十八章 切片、切塊 第十九章 都是為了e 第二十章 你愛我,你不愛我 第二十一章 進入光的世界 第五部 資料 第二十二章 新的常態 第二十三章 機會有多大 第二十四章 解開網絡 第六部 邊境 第二十五章 最孤單的數字 第二十六章 群體思考 第二十七章 扭轉和喊叫 第二十八章 全球思維 第二十九章 分析這個! 第三十章 希爾伯特大飯店

    79 特價 300 立即購買 
  • 溫柔數學史:從古埃及到超級電腦 溫柔數學史:從古埃及到超級電腦 比爾.柏林霍夫 五南 出版 2014/3/25出版

    ☆ 2007年美國數學協會貝肯巴赫讀物獎(Beckenbach Book Prize) ☆ 2007年美國數學協會最受歡迎十大好書首選 ☆ 亞馬遜網路書店五顆星書評 ☆ 國立台灣師範大學數學系洪萬生教授推薦翻譯 數學從何而來?誰想出那些代數符號的?為什麼要用那些符號?π背後的故事是什麼?負數呢?公制單位呢?二次方程式呢?三角函數呢?   本書有25篇獨立精采的素描,用輕鬆易讀的文筆,向教師、學生與任何對數學概念發展有興趣的人們回答這些問題。書中鳥瞰整個數學史的全景,帶您認識形塑今日數學面貌的重要人、事、物。 PART 1 數學教室中的數學史 PART 2 數學簡史 開端 希臘數學 同一時期的印度 阿拉伯的數學 中世紀的歐洲 十五與十六世紀 代數成年禮 微積分與應用數學 嚴密性與專業性 抽象、電腦與新的應用 今日的數學 PART 3 素描 1 算下去 — 寫出所有的整數 2 算術的讀與寫 — 符號的由來 3 「沒有」變成一個數 — 零的故事 4 將數劈開來 — 分數 5 某物小於空無? — 負數 6 十倍和十分之一 — 公制測量單位 7 圓的測量 — π的故事 8 解未知物之術 — 以符號寫出代數式 9 線性思考 — 解一次方程式 10 一個平方與多物 — 二次方程式 11 文藝復興義大利的傳奇 — 尋找三次方程式之解 12 可喜可賀之事 — 畢氏定理 13 令人驚歎的證明 — 費馬最後定理 14 美麗境界 — 歐幾里得平面幾何 15 美哉! 柏拉圖立體 16 以數御形 — 座標幾何 17 不真、虛幻、但有用 — 複數 18 一半比較好 — 正弦與餘弦 19 奇妙新世界 — 非歐幾何 20 慧眼旁觀 — 射影幾何學 21 遊戲乾坤 — 機率論的開端 22 理解數據 — 統計成為一門科學 23 機器會思考? — 電子計算機 24 推理的計算法則 — 邏輯與布爾代數 25 數不勝數 — 無限與集合論 PART 4 延伸閱讀 參考書架 十五本必讀之數學史著作 網際網路和其他媒介 PART 5 思考與討論

    79 特價 261 立即購買 
  • 美麗境界(數學天才納許榮獲諾貝爾獎二十週年改版紀念) 美麗境界(數學天才納許榮獲諾貝爾獎二十週年改版紀念) 西爾維雅.娜薩 時報文化 出版 2014/2/23出版

    ★ 奧斯卡最佳影片《美麗境界》原著傳記 ★《紐約時報》暢銷書No. 1 ★ 1998年美國國家書評獎傳記類得主 ★ 2000年美國數學聯合政策委員會傳播獎 ★ 2014年開卷好書獎《偉大的追尋》作者經典重現! 《美麗境界》描述了一個感人至深的故事, 展現了神祕的數學世界和精神錯亂的悲劇。 ──《紐約時報》 這是個關於數學天才約翰‧納許的故事 也是個有關人類心靈的傳奇 其中包括三幕:天才、瘋狂、甦醒 約翰.納許從小在數學領域嶄露過人天分,他孤獨、驕傲地徜徉在數字王國中解題,樂而不疲;不到三十歲就破解許多數學界公認「不可解」的難題,成為一顆璀璨的明星。就在他名聲輝煌之際,這顆全世界最優秀的頭腦卻崩潰了;納許為精神分裂症所苦,陷入奇異的幻想深淵無法自拔,長達三十年之久。納許如幽靈一般遊蕩在普林斯頓的校園,幾乎被全世界遺忘。 然而,他的另一半艾莉西亞並沒有忘記他,以無盡的愛意從旁陪伴與鼓勵;他的昔日同僚也沒有忘記他,四處奔走,為他申請研究計畫,不願這位天才就此潦倒埋沒。而納許在「賽局理論」的貢獻更沒有被世人遺忘,在當代社會科學領域成為最具影響力的理論,納許因此榮獲1994年諾貝爾經濟學獎。作者娜薩詳實而感性地寫出納許傑出而跌宕的一生,讓人一窺天才悲欣交集的美麗境界,與人性散發高貴光芒的短暫片刻。 獲獎記錄 1998年美國國家書評獎傳記類得主 2000年美國數學聯合政策委員會傳播獎 國內外暢銷記錄 出版首週旋即登上《紐約時報》精裝書暢銷排行榜 亞馬遜書店個人傳記類暢銷書第1名 導讀 美麗心靈與經濟理論 巫和懋 前言 第一篇 美麗之心 第1章 藍田市(一九二八至四五年) 第2章 卡內基理工學院(一九四五年六月至四八年六月) 第3章 宇宙的中心(普林斯頓,一九四八年秋) 第4章 培育天才的搖籃(普林斯頓,一九四八年秋) 第5章 天才(普林斯頓,一九四八至四九年) 第6章 棋賽遊戲(普林斯頓,一九四九年春) 第7章 馮紐曼(普林斯頓一九四八至四九年) 第8章 賽局理論 第9章 談判問題(普林斯頓,一九四九年春) 第10章 納許的對立觀點(普林斯頓,一九四九至五○年) 第11章 夏布雷(普林斯頓,一九五○年) 第12章 智慧之戰(RAND,一九五○年夏) 第13章 賽局理論在RAND(一九二八至四五年) 第14章 徵兵(普林斯頓,一九五○至五一年) 第15章 美麗的定理(普林斯頓,一九五○至五一年) 第16章 麻省理工學院 第17章 壞男孩 第18章 實驗(RAND,一九五二年夏) 第19章 赤色分子(一九五三年春) 第20章 幾何 第二篇 支離片斷的生活 第21章 特異點 第22章 特殊的情誼(聖塔摩尼卡,一九五二年夏) 第23章 依蓮娜 第24章 布列克 第25章 被捕(RAND,一九五四年夏) 第26章 艾莉西亞 第27章 交往過程 第28章 西雅圖(一九六五年夏) 第29章 死亡與婚姻(一九五六至五七年) 第三篇 苗火慢燒 第30章 歐登巷與華盛頓廣場(一九五六至五七年) 第31章 炸彈工廠 第32章 祕密 第33章 計畫(一九五八年秋) 第34章 南極帝王 第35章 暴風眼(一九五九年春) 第36章 包迪奇館的破曉(麥克連醫院,一九五九年四至五月) 第37章 瘋子哈特的茶會(一九五九年五至六月) 第四篇 失去的歲月 第38章 世界公民(巴黎與日內瓦,一九五九至六○年) 第39章 絕對零度(普林斯頓,一九六○年) 第40章 沉默之塔(川頓州立醫院,一九六一年) 第41章 強施理性的插曲(一九六一年七月至六三年四月) 第42章 「爆炸」問題(普林斯頓與開立診所,一九六三至六五年) 第43章 形單影隻(波士頓,一九六五至六七年) 第44章 全然孤立於奇異世界的人(偌納克,一九六七至七○年) 第45章 法恩魅影(普林斯頓,一九七○年代) 第46章 平靜的生活(普林斯頓,一九七○至九○年) 第五篇 奇世瑰寶 第47章 病症的消退 第48章 獲獎 第49章 歷來最大的競賣盛會(華府,一九九四年十二月) 第50章 甦醒(普林斯頓,一九九五至九七年)

    75 特價 338 立即購買 
  • 從算術到代數之路:讓x噴出,大放光明(二版) 從算術到代數之路:讓x噴出,大放光明(二版) 蔡聰明 三民 出版 2013/8/30出版

    2012/1/18自由:台大師大數學系教授新書 讓數學變有趣 〈點選可見相關閱讀〉 算 術方法是:由已知的數據,透過四則運算,逐步計算,以求得答案。但是,每一步都要知道為何而算,以及算出的數所代表的意義。 代數方法是:由目標切入,假設答案已經得到,就是x與 y,然後根據線索用方程式把它們捕捉住 (這是分析法), 再根據數系的運算律,做計算與推理,逐步抽絲剝繭,把x與 y求出來 (這是綜合法)。因此,代數是分析法與綜合法的展現,也是一種結構性、系統性的抽象解題方法,甚具威力,並且擁有向上發展的無窮潛力。今日代數學的語言已 經成為現代數學與科學的基石。 從算術發展到代數是歷史的自然道路;反過來,從代數回頭看算術卻是更上一層樓的洞察本質。我們也特別著重數學史與人文背景的鋪陳,一切概念、方法與理論都 是人類在特定時空背景下所創造出來的。這些就構成了本書的主題。

    79 特價 245 立即購買 
  • 思考的樂趣:頂尖數學家和你想的不一樣 思考的樂趣:頂尖數學家和你想的不一樣 顧森 上奇時代 出版 2013/6/29出版

    你有沒有想過… Candy Crash卡關搞不好是系統在惡搞你? 看似優惠的上網吃到飽,吃最飽的絕對是電信業者! 一票玩到底,坑錢坑到底! 數學最難的地方僅僅在於你覺得它很難。 即使你從小就被數學折磨,對它一點好感都沒有,但是本書的內容一定可以改變你的態度! 本書特點 本書內容是從作者6年多以來積累的上千篇部落格中精選而來的,分為「生活中的數學」、「數學之美」、「幾何的大廈」、「精妙的證明」和「思維的尺度」五部分。書中不涉及高深的數學理論,但是內容新穎、風趣,既有與現實生活聯繫緊密的應用型話題,又有打通幾何、代數聯繫且富有啟發性的討論,還間或介紹了一些著名數學難題的最新研究進展,資訊十分豐富。   本書是廣大數學愛好者的美味佳餚,只要具備簡單數學基礎即能閱讀。第一部分 生活中的數學 1. 機率論教你說謊 2. 找東西背後的機率問題 3. 設計調查問卷的藝術 4. 統計資料的陷阱 5. 為什麼人們往往不願意承擔風險? 6. 消費者承擔消費稅真的吃虧了嗎? 7. 價格裡的陰謀 8. 公用品的悲劇 9. 密碼學與協定 10. 公平分割問題 11. 中文自動分詞演算法 第二部分 數學之美 12. 讓你立刻愛上數學的8 個算術遊戲 13. 最折磨人的數學未解之謎 14. 那些神秘的數學常數 15. 奇妙的心電圖數列 16. 不可思議的碎形 17. 幾何之美:三角形的心 18. 數學之外的美麗:幸福結局問題 第三部分 幾何的大廈 19. 尺規作圖問題 20. 單規作圖的力量 21. 鏽規作圖也瘋狂 22. 火柴棒搭成的幾何世界 23. 折紙的學問 24. 萬能的連杆系統 25. 探索圖形剪拼 第四部分 精妙的證明 26. 我最愛的一個證明 27. 把輔助線作到空間中去的平面幾何問題 28. 小合集(一):幾何問題 29. 皮克定理的另類證法和出人意料的應用 30. 歐拉公式的另類證法和出人意料的應用 31. 定寬曲線與蒲豐投針實驗 32. 來自不同領域的證明 33. 平分面積的直線 34. 小合集(二):圖形證明 35. 生成函數的妙用 36. 利用賭博求解數學問題 37. 非構造性證明 38. 小合集(三):數字問題 第五部分 思維的尺度 39. 史詩般壯觀的數學證明 40. 停機問題與「萬能證明方法」 41. 奇怪的函數(一) 42. 比無窮更大的無窮 43. 奇怪的函數(二) 44. 塔珀自我指涉公式 45. 俄羅斯方塊可以永無止境地玩下去嗎? 46. 無以言表的大數:古德斯坦數列 47. 乘法之後是乘方,乘方之後是什麼? 48. 不同維度的對話:帶你進入四維世界

    79 特價 277 立即購買 
242