1209~1212_出院安心照護一本通選書

Financial Modeling Using Bio-Inspired Algorithms

Financial Modeling Using Bio-Inspired Algorithms

卡娜赫拉的小動物造型悠遊卡-P助壓扁了(裁型)

卡娜赫拉的小動物造型悠遊卡-P助壓扁了(裁型)

【期間限定】即日起至12/25止,悠遊卡全館8折起

  • 9 977
    1085

活動訊息

普發一萬放大術:滿千登記抽萬元好禮

全站滿$1000送100點金幣,可累送! 新會員直接領$500!

內容簡介

newlineThe basis for this research originally stemmed from my passion for developing better and efficient methods to predict the time series financial data. As the world moves further into globalization and in this digital age, generating vast amounts of financial data and born digital content, there will be a greater need to access accurately the financial information about a country, so that it will help in economic growth of that country. Previously it is very difficult to get the parameters and technical indicators that affects the economy of a country. In most of the research works the researchers have used technical indicators as the parameters to predict the stock index and exchange rate of any country. These data are biased so they affect the prediction performance. It has been observed from the analysis of global market that the exchange rate and stock index of any country depends on the major stock indices and exchange rates of developed countries. Therefore, we have designed datasets by considering major stock indices of the world and exchange rates of developed G-7 countries to predict the future values of stock index and exchange rate of another country. In this research work, we have experimentally concluded that we can use the major stock indices of the world and exchange rates of developed countries as predictors. newlineMoreover, from the deep analysis, it has been observed that radial basis function neural networks are capable of universal approximation and are performing better than the other traditional prediction models for predicting the financial data. However, in many cases/instance, it is difficult to obtained the optimal parameters for the radial basis function neural network. Therefore, we have concentrated on designing and improving the efficiency of radial basis function neural networks by using bio-inspired algorithms. In this globalization era the economy of most of the country depends on the financial stability of other country. The prediction of financial data can be done more accurately if we could use better algorithms for prediction purpose. Researchers have suggested that neural networks based algorithms are performing better than traditional statistical algorithms and all most all the researchers are agreed that radial basis function network can be used as a universal approximator. Therefore, in our research work we have used radial basis function neural network as our prediction algorithm and then, we have improved its performance by fine tuning the parameters of the radial basis function neural network by using bio-inspired algorithm. One of the most popular bio-inspired algorithm is particle newlinevii newlineswarm optimization algorithm. It is widely used for solving optimization problems due to its simplicity and less number of parameters. Hence, we have considered canonical particle swarm optimization algorithm to fine tune the parameters of radial basis function neural network. From the experimental results we have observed that the performance of particle swarm optimized radial basis function neural network is performing better than the traditional radial basis function neural network algorithm. However, in this approach we have selected the particles randomly and the initial weights are updated by using the random number generator function. Further, we have analyzed that chaotic functions have better statistical and dynamical behavior than the random number generator function, which basically follows the normal distribution. Therefore, to improve the performance of the above model we have considered chaotic function instead of random number generator function to fine tune the inertia weights. Finally, based on the experimental results, we have compared our proposed model with other models. We have applied our proposed model to the three different areas in financial sector such as stock index prediction.

配送方式

  • 台灣
    • 國內宅配:本島、離島
    • 到店取貨:
      金石堂門市 不限金額免運費
      7-11便利商店 ok便利商店 萊爾富便利商店 全家便利商店
  • 海外
    • 國際快遞:全球
    • 港澳店取:
      ok便利商店 順豐 7-11便利商店

詳細資料

詳細資料

    • 語言
    • 英文
    • 裝訂
    • 紙本平裝
    • ISBN
    • 9785661930286
    • 分級
    • 普通級
    • 頁數
    • 0
    • 商品規格
    • 出版地
    • 美國
    • 適讀年齡
    • 全齡適讀
    • 注音
    • 級別

商品評價

訂購/退換貨須知

加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:

加入金石堂LINE官方帳號『完成綁定』,隨時掌握出貨動態
金石堂LINE官方帳號綁定教學

商品運送說明:

  • 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
  • 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
  • 當廠商出貨後,您會收到E-mail出貨通知,您也可透過【訂單查詢】確認出貨情況。
  • 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
  • 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
  • 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

退換貨須知:

**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**

  • 依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
    1. 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
    2. 依消費者要求所為之客製化給付。(客製化商品)
    3. 報紙、期刊或雜誌。(含MOOK、外文雜誌)
    4. 經消費者拆封之影音商品或電腦軟體。
    5. 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
    6. 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
  • 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
  • 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
  • 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing