會員功能列

 
( 0 件)0 元
結帳
facebook order18 Happy Go Ponta paypal LINE Pay

購物車

( 0 件)0 元
結帳

微積分演習指引

  • 作者:黃學亮 追蹤
  • 出版社:五南 出版社追蹤 功能說明
  • 出版日:2012/1/25
  • ISBN:9789571165363
  • 金石碼:2013140058983
  • 語言:中文繁體
  • 適讀年齡:全齡適讀
  • 定價:680 元
  • 特價:9612(可得紅利6點)
  • 紅利優惠價:87594(折抵說明)
  • 紅利可抵:18
  • 信用卡紅利:可折抵多家銀行 (扣抵說明)
  • 運送方式:全球配送 香港到店 國內宅配
    國內店取 
微積分演習指引
參考庫存量:1本
立即購買 預計出貨日:2018/11/18

金石堂讀者好評

0 個人說讚,看排行 >

內容簡介 top

《微積分演習指引》


本書特色

1.適用於大專、科技大學,理工商管學院等系所學生快速預備考試使用。

2.重要題型標示記號,學習動線流暢迅速。

3.計算題+證明題,雙管齊下,一書包辦!

4.超過1000道問題詳解,反覆演練,戰無不勝。

5.完整蒐羅國內外微積分經典題型。

6.名師精編、自修寶典,輕鬆學會微積分! /本書是專供有志強化微積分解題能力者所寫的一本書,全書之難度始終維持在一個國立大學理工學院中等程度以上學生應該有或經努力後應該達到的微積分水準,本書內容有相當比重是取材自國內外高等微積分的問題,因此本書目標是讓讀者能較輕易地與工程數學、機率學、工程統計、理論統計、財務工程、及其他需要數學為基礎之專業課程能有所接軌,因此除了計算性問題外特別著重證明題,這是本書最大的重點也是最大的特色,更是本書讀者較其他同類型書籍讀者有更大受惠之所在,我的一些學生即便甄試到研究所,仍在研一開學前複習本書以做未來研究生涯的準備。

本書不以協助讀者插班大學或考研究所之目的作為寫作目標,但事實證明使用本書仍可使他們在微積分這門課程有高標準的成績。

如果讀者研習本書有困難時,我推薦可先研讀五南出版之黃學亮教授的普通微積分,這是一本專供初學微積分而有意更上一層樓者的一本教科書,若讀者備有該書在本書研作上可能較為容易些。如果配合研閱,對微積分之部分難題將有突破作用。書中有◎者為常見之重要題,有※為較難題,可供讀者在研閱時作選題之參考。

本書雖是作者累積十數年在大學及補習班教授數學之經案而編成;總希望能對讀者在微積分學習上有所助益,惟作者輒感囿於自身學力有限而無法達成上述理想,同時謬誤之處亦在所難免,尚祈讀者諸君不吝賜正為荷。

作者黃學亮 謹識

作者top

  • 作者介紹


    黃學亮

    學歷:
    國立政治大學統計研究所碩士
    國立清華大學工業工程博士研究

    經歷:
    文化大學、逢甲大學、靜宜大學數學及統計學兼任教師
    考研所補習班微積分及機率統計任課教師

    著作:
    《機率學》
    《生產與作業管理》
    《機率與統計》
    《微積分演習指引》
    《基礎微積分》....等

    作者相關著作:《隨機過程導論》、《基礎微積分》、《基礎工程數學

目錄 top

微積分演習指引-目錄導覽說明




  • 第一章 極限與連續001
    §1-1 直觀極限 / 001
    §1-2 各種極限問題之解法 / 007
    §1-3 無限大(infinity) / 020
    §1-4 連續(Continuity) / 036
    §1-5 漸近線 / 043
    §1-6 極限之正式定義 / 048
    §1-7 連續函數之基本性質 / 058

    第二章 微分學067
    §2-1 導函數之定義 / 067
    §2-2 三角函數、指數函數與對數函數之微分法 / 082
    §2-3 隱函數 / 92
    §2-4 高次微分法 / 95

    第三章 微分應用111
    §3-1 均值定理 / 111
    §3-2 不定型 / 126
    §3-3 泰勒展式 / 149
    §3-4 極 值 / 159
    §3-5 描曲線法 / 205
    §3-6 切線與法線 / 216
    §3-7 估 計 / 228
    §3-8 相對變化率 / 236
    §3-9 微分應用雜論 / 245

    第四章 積 分253
    §4-1 積分之基本解法 / 253
    §4-2 微積分基本定理 / 271
    §4-3 變數變換 / 277
    §4-4 部分積分法 / 282
    §4-5 積分技巧 / 297
    §4-6 Gamma函數與Beta函數 / 352

    第五章 積分應用367
    §5-1 積分的近似值 / 367
    §5-2 面 積 / 374
    §5-3 弧 長 / 390
    §5-4 體 積 / 402
    §5-5 積分方程式簡介 / 406

    第六章 偏微分及其應用413
    §6-1 多變數函數之極限與連續 / 413
    §6-2 偏微分(Partial Derivative) / 420
    §6-3 合成函數之微分 / 426
    §6-4 高次偏微分之解例 / 434
    §6-5 隱函數之微分法 / 442
    §6-6 積分符號下之微分法 / 448
    §6-7 偏微分之應用──多變量相對極大、極小值之求解 / 451
    §6-8 Lagrange乘數 / 458

    第七章 重積分481
    §7-1 定 義 / 481
    §7-2 之變數變換與改變積分順序技巧 / 492
    §7-3 三重積分 / 516
    §7-4 帶有參數之積分法 / 540

    第八章 無窮級數547
    §8-1 收斂與發散 / 547
    §8-2 正項級數 / 559
    §8-3 交錯級數 / 577
    §8-4 冪級數 / 588
    §8-5 二項級數與泰勒級數 / 601
    §8-6 瑕積分 / 617

    第九章 微分方程式629
    §9-1 引 言 / 629
    §9-2 一階微分方程式 / 633
    §9-3 二階微分方程式 / 678

    第十章 向量微積分簡介693
    §10-1 向量與空間平面與直線 / 693
    §10-2 方向導數與切法面方程式 / 713
    §10-3 向量微分 / 729
    §10-4 梯度、散度與旋度 / 736
    §10-5 線積分 / 745
    §10-6 向量積分 / 756

詳細資料top

語言:中文繁體
規格:無
分級:普級
頁數:772
出版地:台灣

共0篇好評top

寫書評去 >

我的標籤

團體專屬服務top

訂購須知top

.36