用Python快速上手資料分析與機器學習

  • 館長推薦
? 快來將您對閱讀的熱情和對書籍的想法分享給所有讀友,每完成一篇讀者書評並審核通過者,即可獲得讀者書評點數,點數還可換電子禮券唷!
分享:

商品訊息

  • 追蹤分類 ? 追蹤分類後,您會在第一時間收到分類新品通知。
  • 作者: 寺田學、真吾等 追蹤作者 ? 追蹤作者後,您會在第一時間收到作者新書通知。
  • 出版社: 碁峰資訊 追蹤出版社 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
  • 出版日:2019/7/17
  • ISBN:9789865021894
  • 適讀年齡:
  • 定價: 500
  • 特價: 79 395
  • 紅利可抵: 12 ? 除單一商品售價低於50元或特價折扣低於3折(含)以下者,其餘商品均可使用紅利點數。
  • 到店取貨: ? 『金石堂』門市取貨免運費。
    『全家、OK、萊爾富、掌櫃』滿350元,免運費;350元以下,運費20元。
    宅配: ? 滿1,000元,免運費
    490元-999元,運費50元
    490元以下,運費65元
  • 配送地區: 全球、 香港OK、 台澎金馬
  • 付款方式: ATM、 信用卡、 LINE Pay、 街口帳戶支付、 貨到付款、 PayPal、 FamiPort、 取貨付款
  • 預計 2019/10/19 出貨 參考庫存量:1 查詢門市庫存 ? 若您欲在金石堂門市購買商品,請選擇欲查看庫存之門市。網頁之「庫存狀態」僅供參考,實際貨況以門市為準。

強力推薦

內容簡介

幫助您在最短的時間內學到資料科學必備的技術與基礎知識
本書的目標族群是想成為資料分析工程師的讀者、對Python有一定程度了解的工程師。所謂「有一定程度了解」,指的是能讀懂Python官方手冊的程度,本書只介紹最低限度所需的Python語法與規格。至於資料分析方法,會使用NumPy或pandas介紹處理資料的方法,接著會介紹以Matplolib具體呈現資料的方法,最後再解說以scikit-learn進行機器學習的分類或預測的方法。除了工具的使用方式之外,也會解說基礎的數學知識。

搞懂資料分析與機器學習必懂的數學知識
要分析資料或是進行機器學習,就必須具備相關的數學知識,所以本書將從數學公式開始講解,直到大家能了解數學公式為止。再者,實際分析資料時,收集資期待各位讀者能透過本書全面地學習資料分析,進而踏出成為資料分析工程師的第一步。

.資料分析必備的基礎數學知識
.基本的Python語法
.使用NumPy或pandas處理資料的方法
.利用Matplolib進行資料視覺化的方法
.以scikit-learn進行機器學習的分類或預測
.實作網路爬蟲
.實作自然語言處理
.實作影像分類

作者

寺田學

目前主要是提供Python Web相關的諮詢與建置手法。從2010年開始積極從事日本國內Python社群的活動,也盡力舉辦PyCon JP。2013年3月開始擔任一般社團法人PcCon JP代表理事,目前也主辦其他OSS相關社群或是擔任相關社群的工作人員。為了說明Python的魅力,最近也全心全意擔任初學者課程與機械學習領域的Python講師。

辻 真吾

研究所畢業後,於IT創投企業服務,但不到三年就離職。回歸博士課程,從事生物資訊科學的研究。目前隸屬東京大學先端科學技術研究中心Genome Science領域。從2015年開始主辦Start Python Club,每個月舉辦一次每個人都可參考的『大家的Python讀書會』。

鈴木TAKANORI

為了建立部內網站而與Zope/Plone相遇,有需要的時候就會使用Python。2011年1月擔任PyCon mini JP的工作人員,2014年~2016年擔任PyCon JP座長。其他的主要活動有擔任Python攀岩部(#kabepy)部長與主辦Python mini Hack-a-thon(#pyhack)。

福島真太朗

研究所時期開始利用C語言與C++語言進行非線性力學的數值計算,進入社會後,從事機械學習、資料剖析的工作,才與Python(與R)相遇。目前在株式會社TOYOTA IT開發中心利用Python與Julia進行工廠感測器資料、車輛資料、影像資料、物理性質、材料資料的剖析。

目錄

Chapter 1 資料分析工程師所扮演的角色
1.1 資料分析的世界
1.2 機械學習的定位與流程
1.3 主要用於資料分析的套件

Chapter 2 Python與環境
2.1 建置執行環境
2.2 Python的基礎
2.3 Jupyter Notebook

Chapter 3 數學的基礎
3.1 閱讀公式所需的基礎知識
3.2 線性代數
3.3 基礎解析
3.4 機率與統計

Chapter 4 利用函式庫分析
4.1 NumPy
4.2 pandas
4.3 Matplotlib
4.4 scikit-learn

Chapter 5 進階:資料的收集與加工
5.1 網路爬蟲
5.2 自然語言的處理
5.3 圖檔處理

序/導讀



「想學習Python 的資料分析,可是該從何學起才好呢?」記得是2017年年中,在社群裡聽到這個問題。市面上雖然已有許多資料分析、機器學習的書籍,卻也因此讓人覺得某些相關書籍不是那麼充足,例如介紹Python基本工具的書,或是介紹分析資料所需的數學知識的書,所以我才決定要寫這本書,也感謝共同作者的幫助,這本書才得以問世。

本書算是一本教科書,主要介紹Python資料分析工具與分析所需的數學知識,也會針對資料分析所需的資訊進行完整又簡潔的說明。希望大家能透過本書學習最基礎的知識,再利用其他官方文件或書籍學習本書未及之處。

本書的目標族群是想成為資料分析工程師的讀者、對Python有一定程度了解的工程師。所謂「有一定程度了解」,指的是能讀懂Python官方教戰手冊的程度,本書也只介紹最低限度所需的Python語法與規格。至於資料分析方法,會使用NumPy或pandas介紹處理資料的方法,接著會介紹以Matplolib具體呈現資料的方法,最後再解說以scikit-learn進行機器學習的分類或預測的方法。除了工具的使用方式之外,也會解說基礎的數學知識。

要分析資料或是進行機器學習,就必須具備相關的數學知識,所以本書將從數學公式開始講解,直到大家能了解數學公式為止。再者,實際分析資料時,收集資料、將資料轉換成方便分析的格式都是非常重要的一環,所以本書也將簡單地介紹網路爬蟲、自然語言處理、影像處理這些內容。
期待各位讀者能透過本書全面地學習資料分析,進而踏出成為資料分析工程師的第一步。

作者代表 寺田學

詳細資料

詳細資料

    • 編/譯者
    • 許郁文
    • 語言
    • 中文繁體
    • 規格
    • 平裝
    • ISBN
    • 9789865021894
    • 分級
    • 普通級
    • 開數
    • 18開17*23cm
    • 頁數
    • 332
    • 出版地
    • 台灣
    • 適讀年齡

訂購須知

下載『金石堂APP』並開啟推播設定,隨時掌握出貨動態:

Google play
App Store

    商品運送說明:

  • 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
  • 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
  • 當廠商出貨後,您會收到E-mail及APP出貨通知,您也可透過【訂單查詢】確認出貨情況。
  • 建議您可下載『金石堂APP』並開啟推播設定,即可收到出貨通知。
  • 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
  • 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
  • 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

預計 2019/10/19 出貨 參考庫存量:1 查詢門市庫存?

32