改變未來20年最重要的20個視覺機器學習理論深讀
-
9折 441元
490元
-
預計最高可得金幣20點 ? 可100%折抵
活動加倍另計 -
HAPPY GO享100累1點 4點抵1元折抵無上限
-
分類:中文書>電腦資訊>APP開發/程式設計>其它程式設計追蹤? 追蹤分類後,您會在第一時間收到分類新品通知。
- 作者: 謝劍斌、興軍亮、張立甯、方宇強 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
- 出版社: 佳魁 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
- 出版日:2016/06/27
活動訊息
內容簡介
本書是12 位博士多年研究視覺機器學習的基礎理論、核心演算法、關鍵技術和應用實作的科學結晶,是作者們多年相關科學研究實作的心得體會和系統歸納。包含K-Means、KNN 學習、回歸學習、決策樹學習、Random Forest、貝氏學習、EM 方法、AdaBoost、SVM 方法、增強學習、流形學習、RBF 學習、稀疏表示、字典學習、BP 學習、CNN 學習、RBM 學習、深度學習、遺傳方法、粒子群方法、蟻群方法共20 個常用視覺機器學習方法。進行深入淺出的說明,以簡單明瞭、豐富圖表、解釋程式、應用為宗旨。
本書特別重視如何將視覺機器學習演算法的理論和實踐結合,解決視覺機器學習領域中的諸多基礎問題,可應用於醫學影像分析、工業自動化、機器人、無人車、人臉檢測與識別、車輛資訊識別、行為檢測與識別、智慧視訊監控等領域。
書中範例原始程式碼,可至佳魁資訊官網下載
目錄
前言
緒論
第1講 K-means
1.1 基本原理
1.2 演算法改進
1.3 模擬實驗
1.4 演算法特點
第2講 KNN 學習
2.1 基本原理
2.2 演算法改進
2.3 模擬實驗
2.4 演算法特點
第3講 回歸學習
3.1 基本原理
3.2 演算法改進
3.3 模擬實驗
3.4 演算法特點
第4講 決策樹學習
4.1 基本原理
4.2 演算法改進
4.3 模擬實驗
第5講 Random Forest 學習
5.1 基本原理
5.2 演算法改進
5.3 模擬實驗
5.4 演算法特點
第6講 貝氏學習
6.1 基本原理
6.2 演算法改進
6.3 模擬實驗
6.4 演算法特點
第7講 EM演算法
7.1 基本原理
7.2 演算法改進
7.3 模擬實驗
7.4 演算法特點
第8講 Adaboost
8.1 基本原理
8.2 演算法改進
8.3 模擬實驗
8.4 演算法特點
第9講 SVM方法
9.1 基本原理
9.2 演算法改進
9.3 模擬實驗
9.4 演算法特點
第10講 增強學習
10.1 基本原理
10.2 演算法改進
10.3 模擬實驗
10.4 演算法特點
第11講 流形學習
11.1 演算法原理
11.2 演算法改進
11.3 演算法模擬
11.4 演算法特點
第12講 RBF 學習
12.1 基本原理
12.2 演算法改進
12.3 模擬實驗
12.4 演算法特點
第13講 稀疏表示
13.1 基本原理
13.2 演算法改進
13.3 模擬實驗
13.4 演算法特點
第14講 字典學習
14.1 基本原理
14.2 演算法改進
14.3 模擬實驗
14.4 以字典學習為基礎的視訊影像降噪方法
14.5 演算法特點
第15講 BP 學習
15.1 基本原理
15.2 演算法改進
15.3 模擬實驗
15.4 演算法特點
第16講 CNN 學習
16.1 基本原理
16.2 演算法改進
16.3 模擬實驗
16.4 演算法特點
第17講 RBM 學習
17.1 基本原理
17.2 演算法改進
17.3 模擬實驗
17.4 演算法特點
第18講 深度學習
18.1 基本原理
18.2 演算法改進
18.3 模擬實驗
18.4 演算法特點
第19講 遺傳演算法
19.1 演算法原理
19.2 演算法改進
19.3 演算法模擬
19.4 演算法特點
第20講 蟻群方法
20.1 基本原理
20.2 演算法改進
20.3 模擬實驗
20.4 演算法特點
序/導讀
前言
視覺機器學習非常有用,但是很難找到稱心如意的參考資料,網路上相關資源不少,但是有的泛泛而談,或空洞無味,或無法執行,或效率很低,或缺乏實驗資料,曾經甚是苦悶,回過頭來思考,大家或多或少都有些酸甜苦辣的經驗和教訓。我提議大家就常用視覺機器學習方法,貢獻出自己的收穫,獲得大家一致贊同。於是我們在多次會議討論之後,形成視覺機器學習20課,大家分頭撰寫,然後由我來統籌、修改和補充。經過近一年的努力,終於開花結果,真心希望這本讀書筆記和心得體會能夠讓同道中人少些奔走,免除去蕪存菁、去偽存真的勞苦,熟悉演算法的來源、發展和所以然,掌握演算法的改進方法、實驗模擬流程、原始程式碼和視訊函數庫,使得研究人員和學生們儘快上手,樹立深入研究的信心。
本書是12 位博士多年研究視覺機器學習的基礎理論、核心演算法、關鍵技術和應用實作的科學結晶,是作者們多年相關科學研究實作的心得體會和系統歸納。包含K-Means、KNN 學習、回歸學習、決策樹學習、Random Forest、貝氏學習、EM 方法、AdaBoost、SVM 方法、增強學習、流形學習、RBF 學習、稀疏表示、字典學習、BP 學習、CNN 學習、RBM 學習、深度學習、遺傳方法、粒子群方法、蟻群方法共20 個常用視覺機器學習方法。進行深入淺出的說明,以簡單明瞭、豐富圖表、解釋程式、應用為宗旨,從基本原理、實現方法、改進方法、模擬流程、核心程式、來源程式、實驗資料等方面重點展開,適合於從事醫學影像分析、工業自動化、機器人、無人車、人臉檢測與識別、車輛資訊識別、行為檢測與識別、智慧視訊監控等領域的研究生和技術人員學習參考。
本書程式碼請至佳魁資訊官網www.topteam.cc 本書相關部分下載。
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
詳細資料
詳細資料
-
- 語言
- 中文繁體
- 裝訂
- 紙本平裝
-
- ISBN
- 9789863793434
- 分級
- 普通級
-
- 頁數
- 296
- 商品規格
- 23*17
-
- 出版地
- 台灣
- 適讀年齡
- 全齡適讀
-
- 注音
- 級別
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價