0920~0926_夏季暢銷第三波BN

Towards Tensorflow 2.0:無痛打造AI模型(iT邦幫忙鐵人賽系列書)

  • 9 450
    500

活動訊息

想找書的時候,特別想偷看網友的書櫃... 原來大家都在看這本 ↓↓↓

用閱讀開啟視野,讓書成為照亮你人生的光
【金石堂選書】本月推薦您這些好書👉 快來看看

內容簡介

本書改編自第 11 屆 iT 邦幫忙鐵人賽,Google Developers Machine Learning 組冠軍網路系列文章 ⸺《Towards Tensorflow 2.0:無痛打造AI模型》,是一本完整結合 Google Colab 學習Tensorflow 的台灣本土專書。AI、機器學習為近年來最熱門的話題,如何透過 AI 來提高企業營收或降低成本,已是各大企業爭相研究的技術。這是一本涵蓋基礎 Tensorflow 語法到各大應用領域的專書,豐富內容結合業界實戰心得與應用 ( 包括:價格預測、影像辨識、推薦系統等 ),帶你探索 AI 的奧妙。

三大重點
☛ 內容涵蓋現今 Tensorflow 2.0 最新語法,由淺入深帶你了解 Tensorflow 語法,從資料選取、資料處理、模型訓練以及視覺化均包含於此書。

☛ 本書涵蓋 DNN、CNN、RNN、GAN 、RL 等現今熱門模型,且搭配許多經典有趣的資料集做學習。除了實作,書中也會提及在真實世界所會遇到的的問題及解法。

☛ 透過線上免費雲端運算資源帶你學習 Tensorflow2.0,不僅不需擁有高運算設備即能學習現今最熱門的 AI 模型,也可以省略掉繁瑣的安裝步驟,可立即上手並學習 AI 核心概念。

適用讀者
具備基礎程式編寫能力的 Tensorflow 初學者、對 AI 有興趣或想轉職成為 AI 工程師的讀者。

作者

陳峻廷

作者於資料科學、機器學習相關領域深耕多年,專案經歷涵蓋多方領域,包含:電信、金融、工廠、廣告等,並致力於運用資料科學及機器學習解決企業問題,現為電信業資料科學家。
 

目錄

01 Tensorflow 介紹
1-1 什麼是Tensorflow?
1-2 Tensorflow 2.0
1-3 線上免費開發測試環境
1-4 總結

02 Tensorflow 基本語法
2-1 變數類型
2-2 建立數據
2-3 數據操作
2-4 數據運算
2-5 總結

03 TF.Keras API
3-1 基本操作
3-2 定義模型
3-3 模型訓練
3-4 模型儲存
3-5 總結

04 Python 資料處理與視覺化實戰
4-1 初入茅廬
4-2 小試身手
4-3 熟能生巧
4-4 觸類旁通
4-5 融會貫通

05 深度神經網路 (Deep Neural Network)
5-1 線性迴歸 (Regression)
5-2 優化器 (Optimizer)
5-3 深度神經網路 (Deep Neural Network)
5-4 深度神經網路- Lab 1 (Data:Airbnb)
5-5 深度神經網路- Lab 2 (Data:Fashion MNIST)
5-6 總結

06 卷積神經網路 (Convolutional Neural Network)
6-1 CNN
6-2 VGG

07 遞歸神經網路 (Recurrent Neural Network)
7-1 遞歸神經網路 (RNN)
7-2 長短期記憶網路
7-3 RNN 實作 - 情感分析
7-4 RNN 實作 - 股價預測
7-5 BERT 初探
7-6 實務技巧分享
7-7 案例說明

08 推薦系統 (Recommendation System)
8-1 推薦系統介紹
8-2 Wide & Deep 推薦系統介紹
8-3 Deep & Wide 模型 Lab
8-4 實務經驗與結論

09 從Auto-Encoder 到GAN
9-1 非監督式學習 (Unsupervised Learning)
9-2 自動編碼器 (Auto-Encoder)
9-3 自動編碼器 (Auto-Encoder) 實作
9-4 Variational Auto-Encoder (VAE)
9-5 生成對抗網路 (Generative Adversarial Network)
9-6 GAN 實作LAB-1
9-7 GAN 實作LAB-2 MNIST

10 增強式學習 (Reinforcement Learning)
10-1 什麼是增強式學習RL
10-2 RL 的學習方法
10-3 DeepQNetwork
10-4 RL DQN - Colab 實作
10-5 總結

11 模型調教與模型服務
11-1 模型調教問題 - Overfit 以及Underfit
11-2 模型視覺化 - TensorBoard
11-3 遷移學習 (Transfer Learning)
11-4 模型服務 (Model Serving)
11-5 總結

配送方式

  • 台灣
    • 國內宅配:本島、離島
    • 到店取貨:
      金石堂門市 不限金額免運費
      7-11便利商店 ok便利商店 萊爾富便利商店 全家便利商店
  • 海外
    • 國際快遞:全球
    • 港澳店取:
      ok便利商店 順豐 7-11便利商店

詳細資料

詳細資料

    • 語言
    • 中文繁體
    • 裝訂
    • 紙本平裝
    • ISBN
    • 9789864345007
    • 分級
    • 普通級
    • 頁數
    • 272
    • 商品規格
    • 18開17*23cm
    • 出版地
    • 台灣
    • 適讀年齡
    • 全齡適讀
    • 注音
    • 級別

商品評價

訂購/退換貨須知

加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:

加入金石堂LINE官方帳號『完成綁定』,隨時掌握出貨動態
金石堂LINE官方帳號綁定教學

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

退換貨須知:

**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**

  • 依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
    1. 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
    2. 依消費者要求所為之客製化給付。(客製化商品)
    3. 報紙、期刊或雜誌。(含MOOK、外文雜誌)
    4. 經消費者拆封之影音商品或電腦軟體。
    5. 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
    6. 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
  • 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
  • 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
  • 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
※ 網友掛保證,絕不踩雷書單如下 ↓↓↓
預計 2025/10/04 出貨 購買後進貨 
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing