TQC+ Python 3.x機器學習基礎與應用特訓教材
活動訊息
內容簡介
本書遵循專業考科「TQC+ 人工智慧:機器學習 Python 3」技能規範架構撰寫,符合鑑定的命題趨勢。
本書範例題目內容為認證題型與命題方向之示範,正式測驗試題不以範例題目為限。
1.內容由淺入深,採循序漸進的方式建立您運用機器學習解決問題的基本概念,達到技術的傳承及表達,符合實務運用需求。
2.本書共有七個章節,包含「Python與機器學習」、「數據前處理」、「監督式學習:迴歸」、「監督式學習:分類」、「模型擬合、評估與超參數調校」、「非監督式學習:降維與分群」、「集成學習」、「機器學習應用」,帶領讀者快速從資料中自動分析獲得規律,並利用規律對未知資料進行預測與分類,是為實現人工智慧:機器學習實際表現之最佳讀本。
3.題庫練習 歡迎到雲端練功坊(https://cloud.csf.org.tw)來充電、練功。
4.配合中華民國電腦技能基金會(https://www.csf.org.tw)測驗,一舉取得專業證照,讓您求學、求職更具競爭力。
本書範例題目內容為認證題型與命題方向之示範,正式測驗試題不以範例題目為限。
1.內容由淺入深,採循序漸進的方式建立您運用機器學習解決問題的基本概念,達到技術的傳承及表達,符合實務運用需求。
2.本書共有七個章節,包含「Python與機器學習」、「數據前處理」、「監督式學習:迴歸」、「監督式學習:分類」、「模型擬合、評估與超參數調校」、「非監督式學習:降維與分群」、「集成學習」、「機器學習應用」,帶領讀者快速從資料中自動分析獲得規律,並利用規律對未知資料進行預測與分類,是為實現人工智慧:機器學習實際表現之最佳讀本。
3.題庫練習 歡迎到雲端練功坊(https://cloud.csf.org.tw)來充電、練功。
4.配合中華民國電腦技能基金會(https://www.csf.org.tw)測驗,一舉取得專業證照,讓您求學、求職更具競爭力。
目錄
Chapter 0 Python與機器學習
0-1 Python發展與編寫環境
0-2 機器學習
0-3 機器學習使用Python
0-4 基礎數學與Python實作
0-5 小結
綜合範例
Chapter 0習題
Chapter 1 數據前處理
1-1 數據類型
1-2 遺漏值
1-3 切割數據集
1-4 異常值
1-5 選取重要特徵
1-6 小結
綜合範例
Chapter 1習題
Chapter 2 監督式學習:迴歸
2-1 線性迴歸
2-2 評估迴歸模型的效能
2-3 正規化的迴歸
2-4 處理非線性關係
2-5 小結
綜合範例
Chapter 2習題
Chapter 3 監督式學習:分類
3-1 迴歸vs分類
3-2 評估分類器的效能
3-3 邏輯斯迴歸
3-4 支援向量機
3-5 樸素貝氏分類
3-6 決策樹
3-8 小結
綜合範例
Chapter 3習題
3-7 K最近鄰
Chapter 4 模型擬合、評估與超參數調校
4-1 工作流程管道化
4-2 過擬合與欠擬合
4-3 評估模型效能
4-4 調校超參數
4-5 處理類別不平衡
4-6 小結
綜合範例
Chapter 4習題
Chapter 5 非監督式學習:降維與分群
5-1 主成分分析降維
5-2 k-means分群
5-3 階層式分群
5-4 DBSCAN分群
5-5 鄰近傳播分群
5-6 小結
綜合範例
Chapter 5習題
Chapter 6 集成學習
6-1 以袋裝法集思廣益
6-2 以提升法互補有無
6-3 以堆疊法兼容並蓄
6-4 小結
綜合範例
Chapter 6習題
Chapter 7 機器學習應用
7-1 自然語言處理
7-2 序列資料處理
7-3 小結
綜合範例
Chapter 7習題
附錄
TQC+人工智慧:機器學習Python 3認證簡章
問題反應表
0-1 Python發展與編寫環境
0-2 機器學習
0-3 機器學習使用Python
0-4 基礎數學與Python實作
0-5 小結
綜合範例
Chapter 0習題
Chapter 1 數據前處理
1-1 數據類型
1-2 遺漏值
1-3 切割數據集
1-4 異常值
1-5 選取重要特徵
1-6 小結
綜合範例
Chapter 1習題
Chapter 2 監督式學習:迴歸
2-1 線性迴歸
2-2 評估迴歸模型的效能
2-3 正規化的迴歸
2-4 處理非線性關係
2-5 小結
綜合範例
Chapter 2習題
Chapter 3 監督式學習:分類
3-1 迴歸vs分類
3-2 評估分類器的效能
3-3 邏輯斯迴歸
3-4 支援向量機
3-5 樸素貝氏分類
3-6 決策樹
3-8 小結
綜合範例
Chapter 3習題
3-7 K最近鄰
Chapter 4 模型擬合、評估與超參數調校
4-1 工作流程管道化
4-2 過擬合與欠擬合
4-3 評估模型效能
4-4 調校超參數
4-5 處理類別不平衡
4-6 小結
綜合範例
Chapter 4習題
Chapter 5 非監督式學習:降維與分群
5-1 主成分分析降維
5-2 k-means分群
5-3 階層式分群
5-4 DBSCAN分群
5-5 鄰近傳播分群
5-6 小結
綜合範例
Chapter 5習題
Chapter 6 集成學習
6-1 以袋裝法集思廣益
6-2 以提升法互補有無
6-3 以堆疊法兼容並蓄
6-4 小結
綜合範例
Chapter 6習題
Chapter 7 機器學習應用
7-1 自然語言處理
7-2 序列資料處理
7-3 小結
綜合範例
Chapter 7習題
附錄
TQC+人工智慧:機器學習Python 3認證簡章
問題反應表
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價