超圖解資料科學X機器學習實戰探索:使用 Python
-
85折 476元
560元
-
預計最高可得金幣20點 ? 可100%折抵
活動加倍另計 -
HAPPY GO享100累1點 4點抵1元折抵無上限
-
分類:中文書>電腦資訊>APP開發/程式設計>Python追蹤? 追蹤分類後,您會在第一時間收到分類新品通知。
- 作者: 陳宗和、楊清鴻、陳瑞泓、王雅惠 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
- 出版社: 旗標 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
- 出版日:2021/06/14
活動訊息
內容簡介
資料科學、機器學習是近來最夯的關鍵字, 所引發的學習熱潮從未間斷。然而初學的你只要稍微上網搜尋可能會發現, 資料科學涉及的領域實在超~級~廣, 包括 AI、機器學習、程式設計、資料視覺化、數學、統計...等等, 一拖拉庫的名詞都與資料科學沾上邊;相關書籍更是不少, 各書的切入點明顯都不一樣, 卻都一致高喊「我帶你學資料科學!」讓初學者看得更花了, 對於如何入門愈來愈沒頭緒...
這麼雜到底怎麼學?AI、統計、Python / R 程式語言...通通碰過一輪?
先看完這本書再說!與其雜亂無章東學西學, 本書大聲告訴你:「資料科學沒那麼複雜!」, 只要跟著書中精心設計的「資料科學 5 步驟」:
問個感興趣的問題 → 資料取得 → 資料處理 → 探索性資料分析 → 機器學習做資料分析
「記牢」、「做熟」這 5 步就夠了!
[鐵了心就是要你會!利用 Colab ✕ Python 反覆操演]
在各步驟中, 我們會帶你用 Colab 免費雲端平台以及 Python 這個超夯工具動手操演多個資料科學經典案例, 讀者可以從過程中逐步吸收資科科學乃至於機器學習各階段要處理的「眉眉角角」。
要是做過一輪還不熟沒關係, 我們換個範例多 run 幾遍!幾輪下來一定會對資料科學的內涵更加清晰, 也會對機器學習在其中所扮演的角色有更深刻的認識!
[圖解爆棚, 隨便翻閱都有感]
更棒的是, 學習資料科學、機器學習免不了會碰到許多看起來很難懂的數學公式, 實作時也得學習各種陌生的 Python 語法, 為此作者特別在書中設計大量插圖, 協助你有效率地理解內容;而每一章最前面的「學習地圖」更可以幫你隨時掌握學習脈絡, 有這些超圖解的「加持」, 讓你遇到再複雜的概念也不怕!
本書特色
★ 精心設計豐富插圖, 每一頁都有感!
★ 零數學公式、統計符號, 輕鬆學會資料科學、機器學習!
★ 用最夯的 Colab + Python 動手實作
★ 機器學習實戰演練:線性迴歸分析、KNN 分類、K-Means 分群...
★ 範例滿載!一次不熟換個範例多 run 幾次保證讓你會!
目錄
Ch01 破冰!資料科學觀念養成
Ch02 Python 資料科學實作平台:Google Colab
Ch03 認識資料科學神器 pandas 並用網路爬蟲取得資料
Ch04 初探資料科學 (一):用 pandas 做資料前處理
Ch05 初探資料科學 (二):用資料視覺化發掘重要資訊
Ch06 經典案例演練!更深入的探索性資料分析
Ch07 資料科學 Level UP!認識機器學習演算法
Ch08 機器學習實戰 (一):用線性迴歸分析做趨勢預測
Ch09 機器學習實戰 (二):用 K最近鄰法 (KNN) 做分類
Ch10 機器學習實戰 (三):用 K平均法 (K-Means) 做分群
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
詳細資料
詳細資料
-
- 語言
- 中文繁體
- 裝訂
- 紙本平裝
-
- ISBN
- 9789863126652
- 分級
- 普通級
-
- 頁數
- 352
- 商品規格
- 23*17
-
- 出版地
- 台灣
- 適讀年齡
- 全齡適讀
-
- 注音
- 級別
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價