0916~0919_開學季語言展

機器視覺技術

達洋貓《櫻花樹》一卡通

達洋貓《櫻花樹》一卡通

【開學大作戰】一卡通全面限時9折起

  • 9 630
    700

活動訊息

想找書的時候,特別想偷看網友的書櫃... 原來大家都在看這本 ↓↓↓

用閱讀開啟視野,讓書成為照亮你人生的光
【金石堂選書】本月推薦您這些好書👉 快來看看

內容簡介

本書分上下兩篇介紹機器視覺的構成、圖像處理方法以及應用實例。

上篇「機器視覺理論與演算法」包括:機器視覺、圖像處理、目標提取、邊緣檢測、圖像平滑處理、幾何參數檢測、Hough變換、幾何變換、單目視覺測量、雙目視覺測量、運動圖像處理、傅立葉變換、小波變換、模式識别、神經網路、深度學習、遺傳演算法。

下篇「機器視覺應用系統」包括:通用圖像處理系統ImageSys、二維運動圖像測量分析系統MIAS、三維運動測量分析系統MIAS 3D、車輛視覺導航系統。

本書匯集了圖像處理絕大多數現有流行演算法,以淺顯的圖文並茂的方法講解複雜的理論演算法,每個演算法都給出了實際處理案例。

書中所講案例均來自生產實踐,都得到了實際應用的檢驗。
本書不僅適用於機器視覺和圖像處理專業理論結合實踐的教學,對於本科系及相關科系的課題研究人員和專業技術人員也具有重要的參考價值。

目錄

上篇 機器視覺理論與算法

第1 章 機器視覺
 1.1 機器視覺的作用
 1.2 機器視覺的硬體構成
   1.2.1 電腦
   1.2.2 圖像採集設備
 1.3 機器視覺的軟體及編程工具
 1.4 機器視覺、機器人和智慧裝備
 1.5 機器視覺的功能與精度

第2 章 圖像處理
 2.1 圖像處理的發展過程
 2.2 數位圖像的採樣與量化
 2.3 彩色圖像與灰階圖像
 2.4 圖像文件及視頻文件格式
 2.5 數位圖像的電腦表述
 2.6 常用圖像處理算法及其通用性問題
 參考文獻

第3 章 目標提取
 3.1 如何提取目標物體
 3.2 基於閾值的目標提取
   3.2.1 二值化處理
   3.2.2 閾值的確定
 3.3 基於顔色的目標提取
   3.3.1 色相、亮度、飽和度及其他
   3.3.2 顔色分量及其組合處理
 3.4 基於差分的目標提取
   3.4.1 幀間差分
   3.4.2 背景差分
 參考文獻

第4 章 邊緣檢測
 4.1 邊緣與圖像處理
 4.2 基於微分的邊緣檢測
 4.3 基於模板匹配的邊緣檢測
 4.4 邊緣圖像的二值化處理
 4.5 細線化處理
 4.6 Canny 算法
 參考文獻

第5 章 圖像平滑處理
 5.1 圖像噪聲及常用平滑方式
 5.2 移動平均
 5.3 中值濾波
 5.4 高斯濾波
 5.5 模糊圖像的清晰化處理
   5.5.1 對比度增強
   5.5.2 自動對比度增強
   5.5.3 直方圖均衡化
   5.5.4 暗通道先驗法去霧處理
 5.6 二值圖像的平滑處理
 參考文獻

第6 章 幾何參數檢測
 6.1 基於圖像特徵的自動識别
 6.2 二值圖像的特徵參數
 6.3 區域標記
 6.4 基於特徵參數提取物體
 6.5 基於特徵參數消除噪聲
 參考文獻

第7 章 Hough 變換
 7.1 傳統Hough 變換的直線檢測
 7.2 過已知點Hough 變換的直線檢測
 7.3 Hough 變換的曲線檢測
 參考文獻

第8 章 幾何變換
 8.1 關於幾何變換
 8.2 放大縮小
 8.3 平移
 8.4 旋轉
 8.5 複雜變形
 8.6 齊次坐標表示
 參考文獻

第9 章 單目視覺測量
 9.1 硬體構成
 9.2 攝影機模型
   9.2.1 參考坐標係
   9.2.2 攝影機模型分析
 9.3 攝影機標定
 9.4 標定尺檢測
   9.4.1 定位追踪起始點
   9.4.2 藍黄邊界檢測
   9.4.3 確定角點坐標
   9.4.4 單應矩陣計算
 9.5 標定結果分析
 9.6 標識點自動檢測
 9.7 手動選取目標
 9.8 距離測量分析
   9.8.1 透視畸變對測距精度的影響
   9.8.2 目標點與標定點的距離對測距精度的影響
 9.9 面積測量算法
   9.9.1 獲取待測區域輪廓點集
   9.9.2 最小凸多邊形擬合
   9.9.3 多邊形面積計算
   9.9.4 測量實例
 參考文獻

第10 章 雙目視覺測量
 10.1 雙目視覺系統的結構
   10.1.1 平行式立體視覺模型
   10.1.2 匯聚式立體視覺模型
 10.2 攝影機標定
   10.2.1 直接線性標定法
   10.2.2 張正友標定法
   10.2.3 攝影機參數與投影矩陣的轉換
 10.3 標定測量試驗
   10.3.1 直接線性標定法試驗
   10.3.2 張正友標定法試驗
   10.3.3 三維測量試驗
 參考文獻

第11 章 運動圖像處理
 11.1 光流法
   11.1.1 光流法的基本概念
   11.1.2 光流法用於目標追蹤的原理
 11.2 模板匹配
 11.3 運動圖像處理實例
   11.3.1 羽毛球技戰術實時圖像檢測
   11.3.2 蜜蜂舞蹈行為分析
 參考文獻

第12 章 傅立葉變換
 12.1 頻率的世界
 12.2 頻率變換
 12.3 離散傅立葉變換
 12.4 圖像的二維傅立葉變換
 12.5 濾波處理
 參考文獻

第13 章 小波變換
 13.1 小波變換概述
 13.2 小波與小波變換
 13.3 離散小波變換
 13.4 小波族
 13.5 信號的分解與重構
 13.6 圖像處理中的小波變換
   13.6.1 二維離散小波變換
   13.6.2 圖像的小波變換編程
 參考文獻

第14 章 模式識别
 14.1 模式識别與圖像識别的概念
 14.2 圖像識别系統的組成
 14.3 圖像識别與圖像處理和圖像理解的關係
 14.4 圖像識别方法
   14.4.1 模板匹配方法
   14.4.2 統計模式識别
   14.4.3 新的模式識别方法
 14.5 人臉圖像識别系統
 參考文獻

第15 章 神經網路
 15.1 人工神經網路
   15.1.1 人工神經網路的生物學基礎
   15.1.2 人工神經元
   15.1.3 人工神經元的學習
   15.1.4 人工神經元的激活函數
   15.1.5 人工神經網路的特點
 15.2 BP 神經網路
   15.2.1 BP 神經網路簡介
   15.2.2 BP 神經網路的訓練學習
   15.2.3 改進型BP 神經網路
 15.3 BP 神經網路在數位字符識别中的應用
   15.3.1 BP 神經網路數位字符識别系統原理
   15.3.2 網路模型的建立
   15.3.3 數位字符識别演示
 參考文獻

第16 章 深度學習
 16.1 深度學習的發展歷程
 16.2 深度學習的基本思想
 16.3 淺層學習和深度學習
 16.4 深度學習與神經網路
 16.5 深度學習訓練過程
 16.6 深度學習的常用方法
   16.6.1 自動編碼器
   16.6.2 稀疏編碼
   16.6.3 限制波爾兹曼機
   16.6.4 深信度網路
   16.6.5 卷積神經網路
 16.7 基於卷積神經網路的手寫體字識别
   16.7.1 手寫字識别的卷積神經網路結構
   16.7.2 卷積神經網路文字識别的實現
 參考文獻

第17 章 遺傳算法
 17.1 遺傳算法概述
 17.2 簡單遺傳算法
   17.2.1 遺傳表達
   17.2.2 遺傳算子
 17.3 遺傳參數
   17.3.1 交叉率和變異率
   17.3.2 其他參數
   17.3.3 遺傳參數的確定
 17.4 適應度函數
   17.4.1 目標函數映射為適應度函數
   17.4.2 適應度函數的尺度變換
   17.4.3 適應度函數設計對GA 的影響
 17.5 模式定理
   17.5.1 模式的幾何解釋
   17.5.2 模式定理
 17.6 遺傳算法在模式識别中的應用
   17.6.1 問題的設定
   17.6.2 GA 的應用方法
   17.6.3 基於GA 的雙目視覺匹配
 參考文獻

下篇 機器視覺應用系統

第18 章 通用圖像處理系統ImageSys
 18.1 系統簡介
 18.2 狀態窗
 18.3 圖像採集
   18.3.1 DirectX 直接採集
   18.3.2 VFW PC 相機採集
   18.3.3 A/D 圖像卡採集
 18.4 直方圖處理
   18.4.1 直方圖
   18.4.2 線剖面
   18.4.3 3D 剖面

序/導讀

智慧製造的核心内容是裝備生産和應用的資訊化與智慧化,機器視覺是實現這一目標的關鍵技術。提起「機器視覺」或者「圖像處理」(機器視覺的軟體部分),許多人並不陌生,但是没有專門學習過的人,往往會把「圖像處理」與用於圖像編輯的Photoshop軟體等同起來,其實兩者之間具有本質的區别。機器視覺中的圖像處理是由電腦對現有的圖像進行分析和判斷,然後根據分析判斷結果去控制執行其他相應的動作或處理;而Photoshop是基於人的判斷,通過人手的操作來改變圖像的顔色、形狀或者剪切與編輯。也就是説,一個是由機器分析判斷圖像並自動執行其他動作,一個是由人分析判斷圖像並手動修改圖像,這就是兩者的本質區别。本書内容就是介紹機器視覺的構成、圖像處理理論算法及應用系統。

目前,市面上圖像處理方面的書比較多,一般都是着眼於講解圖像處理算法理論或者編程方法,筆者本人也編著了兩本圖像處理VC++ 編程和一本機器視覺理論及應用實例介紹方面的書,這些書的主要適用對象是圖像處理編程人員。然而,從事圖像處理編程工作的人畢竟是少數,將來越來越多的人會從事與機器人和智慧裝備相關的操作及技術服務工作,目前國内針對這個群體的機器視覺教育書籍還比較少。近年來,經常有地方理工科院校來諮詢圖像處理實驗室建設事項,他們的目的是圖像處理理論教學,而不是學習圖像處理程序編寫,給他們推薦教材和進行圖像處理實驗室配置都是很困難的事。爲了適應這個龐大群體的需要,本書以普及教學爲目的,盡量以淺顯易懂、圖文並茂的方法來説明複雜的理論算法,每個算法都給出實際處理案例,使一般學習者能够感覺到機器視覺其實並不深奥,也給將來可能從事機器視覺項目開發的人增强信心。

本書匯集了圖像處理絶大多數現有流行算法,對於專業圖像處理研究和編程人員,也具有重要的參考價值。

本書在撰寫過程中得到了田浩、歐陽娣、曾寶明、王橋、楊明、喬妍、朱德利、樑習卉子、陳洪密、代賀等不同程度的幫助,也獲得了北京現代富博科技有限公司的技術支持,在此對他們表示衷心的感謝!

由於筆者水平所限,書中不足之處在所難免,敬請廣大讀者與專家批評指正。

配送方式

  • 台灣
    • 國內宅配:本島、離島
    • 到店取貨:
      金石堂門市 不限金額免運費
      7-11便利商店 ok便利商店 萊爾富便利商店 全家便利商店
  • 海外
    • 國際快遞:全球
    • 港澳店取:
      ok便利商店 順豐 7-11便利商店

詳細資料

詳細資料

    • 語言
    • 中文繁體
    • 裝訂
    • 紙本平裝
    • ISBN
    • 9789575927554
    • 分級
    • 普通級
    • 頁數
    • 354
    • 商品規格
    • 18開17*23cm
    • 出版地
    • 台灣
    • 適讀年齡
    • 全齡適讀
    • 注音
    • 級別

商品評價

訂購/退換貨須知

加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:

加入金石堂LINE官方帳號『完成綁定』,隨時掌握出貨動態
金石堂LINE官方帳號綁定教學

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

退換貨須知:

**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**

  • 依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
    1. 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
    2. 依消費者要求所為之客製化給付。(客製化商品)
    3. 報紙、期刊或雜誌。(含MOOK、外文雜誌)
    4. 經消費者拆封之影音商品或電腦軟體。
    5. 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
    6. 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
  • 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
  • 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
  • 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing