機器學習:使用Python(附範例光碟)
活動訊息
想找書的時候,特別想偷看網友的書櫃... 原來大家都在看這本 ↓↓↓
內容簡介
機器學習是AI人工智慧的基礎,但機器學習本身是門較高深的課程,而本書為了讓讀者能夠快速理解,從入門者的角度做編寫。書中先講述AI及Python語言,複習Python基礎語法到進階語法,讓讀者先掌握Python語言,接著學習機器學習的各種實作項目,如資料分析、線性回歸模型及模型評估等,藉此對於機器學習有更進一步的認識。
目錄
第一章 AI、AI技術與AI應用
1-1 人工智慧
1-2 AI技術
1-3 AI應用
1-4 AI與數學
1-5 AI與編程
1-6 何謂深度學習?
第二章 Python基礎編程語法
2-1 何謂變數?
2-2 編程的操作型定義~以變數為例
2-3 運算與資料
2-4 決策(if)語法
2-5 while 迴圈
2-6 for 迴圈
2-7 功能呼叫 (function call)
2-8 全域變數與區域變數
2-9 List 資料結構
2-10 物件的基本觀念
2-11 numpy模組的多維陣列
第三章 Python進階編程語法
3-1 向量運算模式與泛化函式
3-2 matplotlib繪圖模組的運用
3-3 檔案的輸入輸出
3-4 物件導向程式設計基本概念
3-5 其他
第四章 資料分析的基本觀念
4-1 隨機取樣
4-2 摘要統計(summary statistics)
4-3 共變異數與相關係數
4-4 資料分群演算法
4-5 Python的K-means 分群演算法的應用
第五章 線性迴歸模型
5-1 線性迴歸的數學原理
5-2 Python的線性迴歸模組
5-3 線性回歸模型的應用
5-4 羅吉斯迴歸
第六章 線性分類器
6-1 線性迴歸分類器
6-2 支持向量機分類器
6-3 SVM原理推導
6-4 核函數
6-5 SVM的多元分類應用
第七章 非線性分類器
7-1 類神經網路分類器概論
7-2 類神經網路應用
7-3 Python的類神經網路機器學習模組
7-4 決策樹實務應用
第八章 模型評估
8-1 分類器效能指標
8-2 ROC 曲線
8-3 殘差分析
第九章 其他AI相關主題
9-1 k最近鄰分類演算法
9-2 單純貝氏分類器
9-3 主要成分分析
9-4 資料前處理
9-5 集成學習
附錄A Python安裝與使用
1-1 人工智慧
1-2 AI技術
1-3 AI應用
1-4 AI與數學
1-5 AI與編程
1-6 何謂深度學習?
第二章 Python基礎編程語法
2-1 何謂變數?
2-2 編程的操作型定義~以變數為例
2-3 運算與資料
2-4 決策(if)語法
2-5 while 迴圈
2-6 for 迴圈
2-7 功能呼叫 (function call)
2-8 全域變數與區域變數
2-9 List 資料結構
2-10 物件的基本觀念
2-11 numpy模組的多維陣列
第三章 Python進階編程語法
3-1 向量運算模式與泛化函式
3-2 matplotlib繪圖模組的運用
3-3 檔案的輸入輸出
3-4 物件導向程式設計基本概念
3-5 其他
第四章 資料分析的基本觀念
4-1 隨機取樣
4-2 摘要統計(summary statistics)
4-3 共變異數與相關係數
4-4 資料分群演算法
4-5 Python的K-means 分群演算法的應用
第五章 線性迴歸模型
5-1 線性迴歸的數學原理
5-2 Python的線性迴歸模組
5-3 線性回歸模型的應用
5-4 羅吉斯迴歸
第六章 線性分類器
6-1 線性迴歸分類器
6-2 支持向量機分類器
6-3 SVM原理推導
6-4 核函數
6-5 SVM的多元分類應用
第七章 非線性分類器
7-1 類神經網路分類器概論
7-2 類神經網路應用
7-3 Python的類神經網路機器學習模組
7-4 決策樹實務應用
第八章 模型評估
8-1 分類器效能指標
8-2 ROC 曲線
8-3 殘差分析
第九章 其他AI相關主題
9-1 k最近鄰分類演算法
9-2 單純貝氏分類器
9-3 主要成分分析
9-4 資料前處理
9-5 集成學習
附錄A Python安裝與使用
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
詳細資料
詳細資料
-
- 語言
- 中文繁體
- 裝訂
- 紙本平裝
-
- ISBN
- 9786263284463
- 分級
- 普通級
-
- 頁數
- 332
- 商品規格
- 16開19*26cm
-
- 出版地
- 台灣
- 適讀年齡
- 全齡適讀
-
- 注音
- 級別
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價