0920~0926_夏季暢銷第三波BN

深度學習:影像處理應用

達洋貓《櫻花樹》一卡通

達洋貓《櫻花樹》一卡通

【開學大作戰】一卡通全面限時9折起

  • 420

活動訊息

想找書的時候,特別想偷看網友的書櫃... 原來大家都在看這本 ↓↓↓

用閱讀開啟視野,讓書成為照亮你人生的光
【金石堂選書】本月推薦您這些好書👉 快來看看

內容簡介

本書介紹深度學習於影像處理中的應用,從基礎的機器學習與深度學習技術講起,接著由淺入深地探討深度學習的原理與實現,同時結合實例進行演示和實驗。最後介紹電腦視覺與影像處理的相關技術,並結合深度學習模型應用於多種視覺任務的應用。書中分為兩大部分:第一部分(前七章)將介紹機器學習和深度學習的基礎知識,包括常用的機器學習模型、損失函數、優化算法等,也會在此介紹常見的卷積神經網路(CNN)、循環神經網路(RNN)和生成對抗網路(GAN)等;第二部分(第八章)將深入探討深度學習算法在影像處理中的應用,我們將通過實際案例和實驗,向讀者演示這些算法的原理和實現方法,並探討如何應用這些算法來解決影像處理中的實際問題。

目錄

CH1 人工智慧基本介紹
1-1 何謂人工智慧
1-2 人工智慧、機器學習及深度學習
1-3 人工智慧對人類社會的影響

CH2 環境與資料科學套件介紹
2-1 Google Colab 環境介紹
2-2 Numpy 介紹
2-3 Pandas 介紹
2-4 Pytorch 介紹
2-5 Matplotlib 介紹

CH3 機器學習與深度學習基礎
3-1 機器學習基礎
3-2 深度學習基礎

CH4 卷積神經網路
4-1 類神經網路
4-2 卷積神經網路
4-3 轉置卷積
4-4 其他卷積方法
4-5 卷積神經網路於Pytorch 之實現

CH5 常用深度學習訓練技巧
5-1 標準化
5-2 正則化
5-3 遷移學習及預訓練模型
5-4 交叉驗證
5-5 集成學習
5-6 平行訓練
5-7 深度學習應用於影像處理之技巧

CH6 深度學習架構介紹
6-1 LeNet
6-2 VGGNet
6-3 U-Net
6-4 Residual Network(ResNet)
6-5 InceptionNet(GoogLeNet)
6-6 DenseNet
6-7 Fully Convolutional Networks (FCNs)
6-8 MobileNet V1
6-9 EfficientNet

CH7 進階深度學習技術介紹
7-1 循環神經網路
7-2 長短記憶模型
7-3 門控循環單元
7-4 Attention is all you need
7-5 其他的注意力(Attention)機制
7-6 Vision Transformer(ViT)
7-7 Swin Transformer
7-8 生成對抗式網路(GAN)
7-9 Conditional Generative Adversarial Network(cGAN)
7-10 Pix2pix
7-11 循環生成對抗式網路

CH8 基於影像的深度學習案例
8-1 影像基本原理介紹
8-2 基本影像處理
8-3 邊緣抽取、影像增強與校正
8-4 影像辨識與分類
8-5 深度學習在影像處理的應用
8-6 影像修復與辨識實驗之程式碼介紹

配送方式

  • 台灣
    • 國內宅配:本島、離島
    • 到店取貨:
      金石堂門市 不限金額免運費
      7-11便利商店 ok便利商店 萊爾富便利商店 全家便利商店
  • 海外
    • 國際快遞:全球
    • 港澳店取:
      ok便利商店 順豐 7-11便利商店

詳細資料

詳細資料

    • 語言
    • 中文繁體
    • 裝訂
    • 紙本平裝
    • ISBN
    • 9786263284791
    • 分級
    • 普通級
    • 頁數
    • 312
    • 商品規格
    • 16開19*26cm
    • 出版地
    • 台灣
    • 適讀年齡
    • 全齡適讀
    • 注音
    • 級別

商品評價

訂購/退換貨須知

加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:

加入金石堂LINE官方帳號『完成綁定』,隨時掌握出貨動態
金石堂LINE官方帳號綁定教學

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

退換貨須知:

**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**

  • 依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
    1. 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
    2. 依消費者要求所為之客製化給付。(客製化商品)
    3. 報紙、期刊或雜誌。(含MOOK、外文雜誌)
    4. 經消費者拆封之影音商品或電腦軟體。
    5. 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
    6. 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
  • 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
  • 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
  • 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
※ 網友掛保證,絕不踩雷書單如下 ↓↓↓
預計 2025/09/30 出貨 購買後進貨 
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing