0916~0919_開學季語言展

一步到位! Python 程式設計-最強入門教科書第四版

  • 85 536
    630
  • 分類:
    中文書電腦資訊APP開發/程式設計Python
    追蹤
    ? 追蹤分類後,您會在第一時間收到分類新品通知。
  • 作者: 陳惠貞 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
  • 出版社: 旗標 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
  • 出版日:2024/06/03

活動訊息

想找書的時候,特別想偷看網友的書櫃... 原來大家都在看這本 ↓↓↓

用閱讀開啟視野,讓書成為照亮你人生的光
【金石堂選書】本月推薦您這些好書👉 快來看看

內容簡介

✧✦ AI 加持!初學 Python 的最佳教材,第一次寫程式就上手! ✦✧

✧✦ 從基礎語法到資料科學應用,培養大數據分析的關鍵能力 ✦✧

身處在資料無所不在的世代,大量程式應用、科學運算、網路爬蟲、機器學習的需求應運而生,Python 就是目前處理大數據的最強工具。

大家都想學 Python,不過很多人完全沒有程式基礎,或者曾經半途而廢。本書以淺顯易懂的筆觸與大量的實例演練,引導你在動手寫程式的過程中學會 Python 的語法和程式邏輯,跨越初學者經常遇到的障礙,進入資料科學、機器學習與大數據分析的領域,再搭配 ChatGPT、Colab AI 等 AI 助理的輔助,讓寫程式變得更有效率!

☛ 清楚明瞭的語法教學,搭配 ChatGPT 輔助寫程式!
☛ 豐富滿點的實作範例,自己動手反覆練習最有感!
☛ 無縫接軌四大套件 NumPy、matplotlib、SciPy、pandas,資料處理、分析、運算,快人一等!
☛ 紮穩資料科學基礎,銜接機器學習最強套件 – scikit-learn
☛ 網路爬蟲必備套件 – Requests、Beautiful Soup

本書特色

✯最易學習✯
沒學過程式設計或學到一半就放棄的都沒關係,本書從基礎的語法和程式邏輯開始,以淺顯文字及簡明程式,帶你快速學會 Python 在不同領域的應用。

✯豐富範例✯
本書提供豐富實用的範例,搭配各小節的隨堂練習和章末的學習評量,立即驗證學習成果,自學或課堂教學都適合。

✯最強應用✯
本書內容包含下列幾個資料科學與機器學習最強套件,有了這些基礎,日後你就可以進一步往資料科學、大數據分析、人工智慧等專業的領域發展:
▪︎ NumPy → 資料運算
▪︎ matplotlib → 資料視覺化
▪︎ SciPy → 科學計算
▪︎ pandas → 資料處理與分析
▪︎ Requests + Beautiful Soup → 網路爬蟲抓資料
▪︎ scikit-learn → 機器學習

目錄

▌Part1 基礎篇
第 1 章 開始撰寫 Python 程式
1-1 認識 Python
1-2 使用 Anaconda 開發環境
1-3 使用 Google Colab 雲端開發環境
1-4 Python 程式碼撰寫風格
1-5 程式設計錯誤

第 2 章 型別、變數與運算子
2-1 型別
2-2 變數
2-3 常數
2-4 運算子
2-5 輸出
2-6 輸入

第 3 章 數值與字串處理
3-1 數值處理函式
3-2 字串與字元
3-3 字串處理方法
3-4 數值與字串格式化
3-5 f-string 格式化字串實字

第 4 章 流程控制
4-1 認識流程控制
4-2 if
4-3 for
4-4 while
4-5 break 與 continue 敘述

第 5 章 函式
5-1 認識函式
5-2 定義函式
5-3 呼叫函式
5-4 函式的參數
5-5 函式的傳回值
5-6 全域變數與區域變數
5-7 遞迴函式
5-8 lambda 運算式
5-9 日期時間函式

第 6 章 list、tuple、set 與 dict
6-1 list (串列)
6-2 tuple (序對)
6-3 set (集合)
6-4 dict (字典)

第 7 章 檔案存取
7-1 認識檔案路徑
7-2 寫入檔案
7-3 讀取檔案
7-4 with 敘述
7-5 管理檔案與資料夾

第 8 章 例外處理
8-1 認識例外
8-2 try⋯except

第 9 章 物件導向
9-1 認識物件導向
9-2 使用類別與物件
9-3 繼承
9-4 多型

第 10 章 模組與套件
10-1 模組
10-2 套件
10-3 第三方套件

▌Part2 實戰篇
第 11 章 圖片處理與 QR 碼 – pillow、qrcode
11-1 使用 pillow 套件處理圖片
11-2 使用 qrcode 套件產生 QR code

第 12 章 陣列與資料運算 – NumPy
12-1 認識 NumPy
12-2 NumPy 的資料型別
12-3 一維陣列運算
12-4 二維陣列運算
12-5 通用函式
12-6 廣播
12-7 視點 (view) 與複本 (copy)
12-8 數學函式
12-9 隨機取樣函式
12-10 統計函式
12-11 檔案資料輸入/輸出

第 13 章 繪製圖表 – matplotlib
13-1 認識 matplotlib
13-2 繪製線條或標記
13-3 繪製長條圖
13-4 繪製直方圖
13-5 繪製圓形圖
13-6 繪製散佈圖

第 14 章 科學計算 – SciPy
14-1 認識 SciPy
14-2 統計子套件 scipy.stats
14-3 最佳化子套件 scipy.optimize
14-4 插值子套件 scipy.interpolate

第 15 章 資料分析 – pandas
15-1 認識 pandas
15-2 pandas 的資料結構
15-3 pandas 的基本功能

第 16 章 機器學習 – scikit-learn
16-1 認識機器學習
16-2 線性迴歸
16-3 邏輯迴歸
16-4 K-近鄰演算法
16-5 決策樹
16-6 隨機森林

第 17 章 網路爬蟲 – Requests、Beautiful Soup
17-1 認識網路爬蟲
17-2 使用 Requests 抓取網頁資料
17-3 使用 Beautiful Soup 解析網頁資料

第 18 章 AI 輔助寫碼 – ChatGPT
18-1 開始使用 ChatGPT
18-2 查詢 Python 語法與技術建議
18-3 撰寫 Python 程式、除錯與註解
18-4 與其它程式語言互相轉換
18-5 【實例演練】統一發票兌獎程式

配送方式

  • 台灣
    • 國內宅配:本島、離島
    • 到店取貨:
      金石堂門市 不限金額免運費
      7-11便利商店 ok便利商店 萊爾富便利商店 全家便利商店
  • 海外
    • 國際快遞:全球
    • 港澳店取:
      ok便利商店 順豐 7-11便利商店

詳細資料

詳細資料

    • 語言
    • 中文繁體
    • 裝訂
    • 紙本平裝
    • ISBN
    • 9789863127956
    • 分級
    • 普通級
    • 頁數
    • 560
    • 商品規格
    • 23.0*17.0*2.0
    • 出版地
    • 台灣
    • 適讀年齡
    • 全齡適讀
    • 注音
    • 級別

商品評價

訂購/退換貨須知

加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:

加入金石堂LINE官方帳號『完成綁定』,隨時掌握出貨動態
金石堂LINE官方帳號綁定教學

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

退換貨須知:

**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**

  • 依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
    1. 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
    2. 依消費者要求所為之客製化給付。(客製化商品)
    3. 報紙、期刊或雜誌。(含MOOK、外文雜誌)
    4. 經消費者拆封之影音商品或電腦軟體。
    5. 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
    6. 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
  • 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
  • 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
  • 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
※ 網友掛保證,絕不踩雷書單如下 ↓↓↓
預計 2025/09/24 出貨 購買後進貨 
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing