機器學習的高風險應用|負責任的人工智慧方法
-
9折 702元
780元
-
預計最高可得金幣35點 ? 可100%折抵
活動加倍另計 -
HAPPY GO享100累1點 4點抵1元折抵無上限
-
分類:中文書>電腦資訊>概論/科技趨勢>人工智慧/機器學習追蹤? 追蹤分類後,您會在第一時間收到分類新品通知。
- 作者: Patrick Hall、James CurtisPa 、 Parul Pandey 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
- 譯者:柳百郁
- 出版社: 歐萊禮 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
- 出版日:2024/04/02
活動訊息
內容簡介
「作者完美呈現監管單位觀點、風險管理、可解釋性與其他諸多主題的概觀,同時提供實務建議與程式碼範例。」
—Christoph Molnar
Interpretable Machine Learning作者
「使用獨特戰術處理方式,解決ML系統風險,讓本書脫穎而出。透過細微差異的處理降低ML風險,為讀者提供寶貴資源,以負責任又可持續的方式成功佈署ML系統。」
—Liz Grennan
Digital Trust, McKinsey&Company初級合夥人暨全球事務共同領導者
過去十年,見證了人工智慧與機器學習(AI/ML)技術的廣泛採用。然而,疏於監督這些廣泛實施的技術,導致原本可由適切風險管理來避免的事故與不良後果。在認識AI/ML真正的好處前,從業人員必須瞭解如何降低風險。
本書說明負責任AI的處理方式:建立在風險管理、資安、資料隱私上,並套用社交科學的最佳實作,提升AI/ML技術、商業程序與文化能力的完整框架。作者Patrick Hall、James Curtis與Parul Pandey創作了這本指南,以期能協助企業、客戶與大眾改善真實世界AI/ML系統結果的資料科學家。
‧學習完整涵蓋可解釋性、模組驗證與除錯、偏見管理、資料隱私與ML安全性的負責任AI技術處理
‧學習如何建立成功的、有影響力的AI風險管理實作
‧對採用AI技術的現有標準、法律與評估方式有基本瞭解,包括近期的NIST AI Risk Management Framework
‧使用GitHub與Colab的互動式資源
—Christoph Molnar
Interpretable Machine Learning作者
「使用獨特戰術處理方式,解決ML系統風險,讓本書脫穎而出。透過細微差異的處理降低ML風險,為讀者提供寶貴資源,以負責任又可持續的方式成功佈署ML系統。」
—Liz Grennan
Digital Trust, McKinsey&Company初級合夥人暨全球事務共同領導者
過去十年,見證了人工智慧與機器學習(AI/ML)技術的廣泛採用。然而,疏於監督這些廣泛實施的技術,導致原本可由適切風險管理來避免的事故與不良後果。在認識AI/ML真正的好處前,從業人員必須瞭解如何降低風險。
本書說明負責任AI的處理方式:建立在風險管理、資安、資料隱私上,並套用社交科學的最佳實作,提升AI/ML技術、商業程序與文化能力的完整框架。作者Patrick Hall、James Curtis與Parul Pandey創作了這本指南,以期能協助企業、客戶與大眾改善真實世界AI/ML系統結果的資料科學家。
‧學習完整涵蓋可解釋性、模組驗證與除錯、偏見管理、資料隱私與ML安全性的負責任AI技術處理
‧學習如何建立成功的、有影響力的AI風險管理實作
‧對採用AI技術的現有標準、法律與評估方式有基本瞭解,包括近期的NIST AI Risk Management Framework
‧使用GitHub與Colab的互動式資源
目錄
前言
第一部 AI風險管理理論與實務應用
第一章 當代機器學習風險管理
第二章 可詮釋性與可解釋性機器學習
第三章 機器學習系統的安全與效能除錯
第四章 機器學習偏差管理
第五章 機器學習安全性
第二部 AI 風險管理付諸實現
第六章 可解釋增強機與解釋XGBoost
第七章 解釋PyTorch 影像分類器
第八章 XGBoost 模型的選擇與除錯
第九章 PyTorch 影像分類除錯
第十章 使用XGBoost 測試與補救偏差
第十一章 XGBoost 紅隊演練
第三部 結論
第十二章 如何實現高風險機器學習目標
索引
第一部 AI風險管理理論與實務應用
第一章 當代機器學習風險管理
第二章 可詮釋性與可解釋性機器學習
第三章 機器學習系統的安全與效能除錯
第四章 機器學習偏差管理
第五章 機器學習安全性
第二部 AI 風險管理付諸實現
第六章 可解釋增強機與解釋XGBoost
第七章 解釋PyTorch 影像分類器
第八章 XGBoost 模型的選擇與除錯
第九章 PyTorch 影像分類除錯
第十章 使用XGBoost 測試與補救偏差
第十一章 XGBoost 紅隊演練
第三部 結論
第十二章 如何實現高風險機器學習目標
索引
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價