線性代數及其應用(下)
活動訊息
內容簡介
本書共八章分成上、下二冊,第零章先介紹一些往後各章會用到的基礎數學,第一章討論矩陣及線性系統,矩陣為線性代數中一個很重要的工具,而解線性系統則為一個很基本且具有相當多應用的問題。第二章介紹行列式,這也是線性代數一個很重要工具。第三章討論向量空間,向量空間可以說是支撐線性代數的一個平台,主要內容在討論獨立、生成及基底的觀念。第四章引進比較動態且抽象的函數觀念,即線性映射,它可用來表示向量之間線性轉換的過程,在此我們也研究如何利用比較具體的矩陣來表示一個比較抽象的線性映射。第五章介紹對角化及其相關應用,這是線性代數應用最廣的問題之一,將一個矩陣或線性映射對角化可解決許多應用方面的問題。然而當一個矩陣或線性映射無法對角化時,此時退而求其次對矩陣或線性映射作Jordan form,這也是我們第六章的內容,第七章介紹內積,內積主要用來測度一個向量的長度以及向量之間是否垂直,有了測度便可處理一些量化的最佳化問題,這在線性代數的應用裡佔了相當重要的地位。第八章介紹幾個比較重要的線性算子或矩陣,另外也討論比一般對角化更完美的正交對角化。
目錄
第五章 對角化及其應用
5-1 相似性
5-2 不變子空間
5-3 特徵根及特徵向量
5-4 對角化
5-5 冪等算子與矩陣
5-6 對角化的應用
5-7 特徵根的近似解法
5-8 Markov 鏈
第六章 Jordan 型及其應用
6-1 冪零算子
6-2 循環子空間及循環分解
6-3 Jordan 型
6-4 Cayley-Hamilton 定理及其應用
6-5 Jordan 型的應用
6-6 極小多項式
第七章 內積空間
7-1 內積 7-3
7-2 Gram-Schmidt 正交化及QR 分解
7-3 正交投影
7-4 正交補空間
第八章 內積上的算子及其應用
8-1 伴隨算子
8-2 正規算子與矩陣
8-3 麼正及正交算子的特性
8-4 雙線性型式與半雙線性型式
8-5 正定及正半定算子與矩陣
8-6 麼正及正交對角化
8-7 正定及正半定矩陣的特性
8-8 二次式的應用
8-9 矩陣的長度及條件數
8-10 Householder 轉換
8-11 奇異值分解
5-1 相似性
5-2 不變子空間
5-3 特徵根及特徵向量
5-4 對角化
5-5 冪等算子與矩陣
5-6 對角化的應用
5-7 特徵根的近似解法
5-8 Markov 鏈
第六章 Jordan 型及其應用
6-1 冪零算子
6-2 循環子空間及循環分解
6-3 Jordan 型
6-4 Cayley-Hamilton 定理及其應用
6-5 Jordan 型的應用
6-6 極小多項式
第七章 內積空間
7-1 內積 7-3
7-2 Gram-Schmidt 正交化及QR 分解
7-3 正交投影
7-4 正交補空間
第八章 內積上的算子及其應用
8-1 伴隨算子
8-2 正規算子與矩陣
8-3 麼正及正交算子的特性
8-4 雙線性型式與半雙線性型式
8-5 正定及正半定算子與矩陣
8-6 麼正及正交對角化
8-7 正定及正半定矩陣的特性
8-8 二次式的應用
8-9 矩陣的長度及條件數
8-10 Householder 轉換
8-11 奇異值分解
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價