0929~0930_開學語言展

Graph Machine Learning - Second Edition

Graph Machine Learning - Second Edition
預購

達洋貓《櫻花樹》一卡通

達洋貓《櫻花樹》一卡通

【開學大作戰】一卡通全面限時9折起

看更多
  • 9 2327
    2585
  • 分類:
    英文書自然科普電腦資訊網路/網路安全
    追蹤
    ? 追蹤分類後,您會在第一時間收到分類新品通知。
  • 作者: Aldo,Marzullo 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
  • 出版社: Packt 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
  • 出版日:2025/07/18
  • 信用卡分期: 60利率  每期 388更多分期
    分期價:除不盡餘數於第一期收取
    30利率 每期776 接受26 家銀行
    60利率 每期388 接受26 家銀行
    30利率  接受26家銀行
    土地銀行、合作金庫、第一銀行、華南銀行、上海銀行、台北富邦、兆豐商銀、花旗(台灣)銀行、澳盛銀行、臺灣企銀、渣打商銀、滙豐(台灣)銀行、臺灣新光商銀、陽信銀行、三信銀行、聯邦銀行、遠東銀行、元大銀行、永豐銀行、玉山銀行、星展銀行、台新銀行、日盛銀行、安泰銀行、中國信託、台灣樂天
    60利率  接受26家銀行
    土地銀行、合作金庫、第一銀行、華南銀行、上海銀行、台北富邦、兆豐商銀、花旗(台灣)銀行、澳盛銀行、臺灣企銀、渣打商銀、滙豐(台灣)銀行、臺灣新光商銀、陽信銀行、三信銀行、聯邦銀行、遠東銀行、元大銀行、永豐銀行、玉山銀行、星展銀行、台新銀行、日盛銀行、安泰銀行、中國信託、台灣樂天
    120利率  接受26家銀行
    土地銀行、合作金庫、第一銀行、華南銀行、上海銀行、台北富邦、兆豐商銀、花旗(台灣)銀行、澳盛銀行、臺灣企銀、渣打商銀、滙豐(台灣)銀行、臺灣新光商銀、陽信銀行、三信銀行、聯邦銀行、遠東銀行、元大銀行、永豐銀行、玉山銀行、星展銀行、台新銀行、日盛銀行、安泰銀行、中國信託、台灣樂天
    240利率  接受22家銀行
    土地銀行、合作金庫、第一銀行、華南銀行、上海銀行、台北富邦、花旗(台灣)銀行、澳盛銀行、臺灣企銀、渣打商銀、滙豐(台灣)銀行、臺灣新光商銀、陽信銀行、聯邦銀行、遠東銀行、元大銀行、玉山銀行、星展銀行、台新銀行、日盛銀行、安泰銀行、中國信託

內容簡介

Enhance your data science skills with this updated edition featuring new chapters on LLMs, temporal graphs, and updated examples with modern frameworks, including PyTorch Geometric, and DGL

Key Features:

- Master new graph ML techniques through updated examples using PyTorch Geometric and Deep Graph Library (DGL)

- Explore GML frameworks and their main characteristics

- Leverage LLMs for machine learning on graphs and learn about temporal learning

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Graph Machine Learning, Second Edition builds on its predecessor's success, delivering the latest tools and techniques for this rapidly evolving field. From basic graph theory to advanced ML models, you'll learn how to represent data as graphs to uncover hidden patterns and relationships, with practical implementation emphasized through refreshed code examples. This thoroughly updated edition replaces outdated examples with modern alternatives such as PyTorch and DGL, available on GitHub to support enhanced learning.

The book also introduces new chapters on large language models and temporal graph learning, along with deeper insights into modern graph ML frameworks. Rather than serving as a step-by-step tutorial, it focuses on equipping you with fundamental problem-solving approaches that remain valuable even as specific technologies evolve. You will have a clear framework for assessing and selecting the right tools.

By the end of this book, you'll gain both a solid understanding of graph machine learning theory and the skills to apply it to real-world challenges.

What You Will Learn:

- Implement graph ML algorithms with examples in StellarGraph, PyTorch Geometric, and DGL

- Apply graph analysis to dynamic datasets using temporal graph ML

- Enhance NLP and text analytics with graph-based techniques

- Solve complex real-world problems with graph machine learning

- Build and scale graph-powered ML applications effectively

- Deploy and scale your application seamlessly

Who this book is for:

This book is for data scientists, ML professionals, and graph specialists looking to deepen their knowledge of graph data analysis or expand their machine learning toolkit. Prior knowledge of Python and basic machine learning principles is recommended.

Table of Contents

- Getting Started with Graphs

- Graph Machine Learning

- Neural Networks and Graphs

- Unsupervised Graph Learning

- Supervised Graph Learning

- Solving Common Graph-Based Machine Learning Problems

- Social Network Graphs

- Text Analytics and Natural Language Processing Using Graphs

- Graph Analysis for Credit Card Transactions

- Building a Data-Driven Graph-Powered Application

- Temporal Graph Machine Learning

- GraphML and LLMs

- Novel Trends on Graphs

配送方式

  • 台灣
    • 國內宅配:本島、離島
    • 到店取貨:
      金石堂門市 不限金額免運費
      7-11便利商店 ok便利商店 萊爾富便利商店 全家便利商店
  • 海外
    • 國際快遞:全球
    • 港澳店取:
      ok便利商店 順豐 7-11便利商店

詳細資料

詳細資料

    • 語言
    • 英文
    • 裝訂
    • 紙本平裝
    • ISBN
    • 9781803248066
    • 分級
    • 普通級
    • 頁數
    • 0
    • 商品規格
    • 出版地
    • 美國
    • 適讀年齡
    • 全齡適讀
    • 注音
    • 級別

商品評價

訂購/退換貨須知

加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:

加入金石堂LINE官方帳號『完成綁定』,隨時掌握出貨動態
金石堂LINE官方帳號綁定教學

商品運送說明:

  • 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
  • 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
  • 當廠商出貨後,您會收到E-mail出貨通知,您也可透過【訂單查詢】確認出貨情況。
  • 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
  • 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
  • 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

退換貨須知:

**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**

  • 依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
    1. 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
    2. 依消費者要求所為之客製化給付。(客製化商品)
    3. 報紙、期刊或雜誌。(含MOOK、外文雜誌)
    4. 經消費者拆封之影音商品或電腦軟體。
    5. 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
    6. 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
  • 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
  • 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
  • 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing