How Large Language Models Work
How Large Language Models Work
-
9折 2294元
2549元
-
預計最高可得金幣110點
?
可100%折抵
活動加倍另計 -
HAPPY GO享100累1點 4點抵1元 折抵無上限
-
分類:英文書>自然科普>電腦資訊>網路/網路安全追蹤? 追蹤分類後,您會在第一時間收到分類新品通知。
- 作者: Edward,Raff 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
- 出版社: Manning Publications 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
- 出版日:2025/07/15
內容簡介
Learn how large language models like GPT and Gemini work under the hood in plain English. How Large Language Models Work translates years of expert research on Large Language Models into a readable, focused introduction to working with these amazing systems. It explains clearly how LLMs function, introduces the optimization techniques to fine-tune them, and shows how to create pipelines and processes to ensure your AI applications are efficient and error-free. In How Large Language Models Work you will learn how to: - Test and evaluate LLMs
- Use human feedback, supervised fine-tuning, and Retrieval augmented generation (RAG)
- Reducing the risk of bad outputs, high-stakes errors, and automation bias
- Human-computer interaction systems
- Combine LLMs with traditional ML Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. How Large Language Models Work is written by some of the best machine learning researchers at Booz Allen Hamilton, including researcher Stella Biderman, Director of AI/ML Research Drew Farris, and Director of Emerging AI Edward Raff. In clear and simple terms, these experts lay out the foundational concepts of LLMs, the technology's opportunities and limitations, and best practices for incorporating AI into your organization. About the book How Large Language Models Work is an introduction to LLMs that explores OpenAI's GPT models. The book takes you inside ChatGPT, showing how a prompt becomes text output. In clear, plain language, this illuminating book shows you when and why LLMs make errors, and how you can account for inaccuracies in your AI solutions. Once you know how LLMs work, you'll be ready to start exploring the bigger questions of AI, such as how LLMs "think" differently that humans, how to best design LLM-powered systems that work well with human operators, and what ethical, legal, and security issues can--and will--arise from AI automation. About the reader Includes examples in Python. No knowledge of ML or AI systems is required. About the author Edward Raff is a Director of Emerging AI at Booz Allen Hamilton, where he leads the machine learning research team. He has worked in healthcare, natural language processing, computer vision, and cyber security, among fundamental AI/ML research. The author of Inside Deep Learning, Dr. Raff has over 100 published research articles at the top artificial intelligence conferences. He is the author of the Java Statistical Analysis Tool library, a Senior Member of the Association for the Advancement of Artificial Intelligence, and twice chaired the Conference on Applied Machine Learning and Information Technology and the AI for Cyber Security workshop. Dr. Raff's work has been deployed and used by anti-virus companies all over the world. Drew Farris is a Director of AI/ML Research at Booz Allen Hamilton. He works with clients to build information retrieval, as well as machine learning and large scale data management systems, and has co-authored Booz Allen's Field Guide to Data Science, Machine Intelligence Primer and Manning Publications' Taming Text, the 2013 Jolt Award-winning book on computational text processing. He is a member of the Apache Software Foundation and has contributed to a number of open source projects including Apache Accumulo, Lucene, Mahout and Solr. Stella Biderman is a machine learning researcher at Booz Allen Hamilton and the executive director of the non-profit research center EleutherAI. She is a leading advocate for open source artificial intelligence and has trained many of the world's most powerful open source artificial intelligence algorithms. She has a master's degree in computer science from the Georgia Institute of Technology and degrees in Mathematics and Philosophy from the University of Chicago.
- Use human feedback, supervised fine-tuning, and Retrieval augmented generation (RAG)
- Reducing the risk of bad outputs, high-stakes errors, and automation bias
- Human-computer interaction systems
- Combine LLMs with traditional ML Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. How Large Language Models Work is written by some of the best machine learning researchers at Booz Allen Hamilton, including researcher Stella Biderman, Director of AI/ML Research Drew Farris, and Director of Emerging AI Edward Raff. In clear and simple terms, these experts lay out the foundational concepts of LLMs, the technology's opportunities and limitations, and best practices for incorporating AI into your organization. About the book How Large Language Models Work is an introduction to LLMs that explores OpenAI's GPT models. The book takes you inside ChatGPT, showing how a prompt becomes text output. In clear, plain language, this illuminating book shows you when and why LLMs make errors, and how you can account for inaccuracies in your AI solutions. Once you know how LLMs work, you'll be ready to start exploring the bigger questions of AI, such as how LLMs "think" differently that humans, how to best design LLM-powered systems that work well with human operators, and what ethical, legal, and security issues can--and will--arise from AI automation. About the reader Includes examples in Python. No knowledge of ML or AI systems is required. About the author Edward Raff is a Director of Emerging AI at Booz Allen Hamilton, where he leads the machine learning research team. He has worked in healthcare, natural language processing, computer vision, and cyber security, among fundamental AI/ML research. The author of Inside Deep Learning, Dr. Raff has over 100 published research articles at the top artificial intelligence conferences. He is the author of the Java Statistical Analysis Tool library, a Senior Member of the Association for the Advancement of Artificial Intelligence, and twice chaired the Conference on Applied Machine Learning and Information Technology and the AI for Cyber Security workshop. Dr. Raff's work has been deployed and used by anti-virus companies all over the world. Drew Farris is a Director of AI/ML Research at Booz Allen Hamilton. He works with clients to build information retrieval, as well as machine learning and large scale data management systems, and has co-authored Booz Allen's Field Guide to Data Science, Machine Intelligence Primer and Manning Publications' Taming Text, the 2013 Jolt Award-winning book on computational text processing. He is a member of the Apache Software Foundation and has contributed to a number of open source projects including Apache Accumulo, Lucene, Mahout and Solr. Stella Biderman is a machine learning researcher at Booz Allen Hamilton and the executive director of the non-profit research center EleutherAI. She is a leading advocate for open source artificial intelligence and has trained many of the world's most powerful open source artificial intelligence algorithms. She has a master's degree in computer science from the Georgia Institute of Technology and degrees in Mathematics and Philosophy from the University of Chicago.
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:
商品運送說明:
- 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
- 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
- 當廠商出貨後,您會收到E-mail出貨通知,您也可透過【訂單查詢】確認出貨情況。
- 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
- 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
- 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。
提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。




商品評價