1開啟AI時代的深度學習
~現在的AI熱潮要從2012年的「Cat Paper」開始說起~
報紙或電視節目幾乎每天都會提到與AI有關的話題,而深度學習正是引起這波AI熱潮的關鍵,使社會出現了很大的改變。
AI熱潮
AI是英語Artificial Intelligence的首字母簡稱,譯為人工智慧。
我們幾乎每天都可以在報紙或電視新聞上看到與AI有關的報導。
「AI自動駕駛即將實現。」
「AI在癌細胞的影像判讀上有很大的幫助。」
類似的例子不勝枚舉。
AI為什麼會在現在引起熱潮呢?在二十一世紀初期,有誰會想到有這樣的熱潮呢?
一切要從發表於2012年的「Cat Paper」開始說起。
「Cat Paper」與深度學習
事情發生在深度學習發表的那一年,也就是2012年。美國Google公司在這一年6月發表的研究結果中提到「在沒有他人幫助的情況下,AI成功自行識別出貓」。後來,這篇論文在AI界中被稱做Cat Paper。
Cat Paper之所以是劃時代的論文,是因為研究過程中研究人員完全沒有告訴電腦任何一個貓的特徵。電腦會自己分析出貓的特徵,之後就算看到完全沒看過的貓咪圖像,也能判斷「這就是貓」,這代表電腦已能「自己從資料中學習」。
再重複一次,Cat Paper之所以是劃時代的論文,是因為它「讓電腦能自己從資料中學習」。而這個「Cat Paper」所使用的方式就是Deep Learning,可譯為深度學習。而深度學習這個概念,正是改變時代的關鍵。在生產、流通、語言、交通、醫療、製藥、教育、軍事、照護等許多領域,都引起了革命性的改變。
2 深度學習與AI
~與過去的AI不一樣的地方在於「自己從資料中學習」
深度學習一詞常與AI同時出現。AI是二十世紀後半誕生的詞彙,讓我們回顧從那時到現代的歷史吧,這樣就能了解深度學習在AI中的定位了。
AI的歷史
AI並不是最近才成為熱門話題。以前的主流媒體界曾出現過兩波AI熱潮,現代則是第三波AI熱潮。
第一波熱潮發生於1950年代,是電腦開始於社會普及的時候。人們鉅細靡遺地告訴機器(電腦)各種計算方法,希望能夠創造出人工的智慧(也就是AI)。
這種設計AI的方式叫做規則主導法(rule based)。當時的人們樂觀地認為,只要單方面塞進許多邏輯、規則,就可以創造出「知性」,也就是智慧。
1950年代時,記憶體十分昂貴,且大容量的記憶媒體還沒出現,所以當時的人們只能希望透過塞入大量邏輯來實現知性。
「單靠邏輯實現『知性』」這種規則主導的方式,即使用在現代電腦上也無法成功。更不用說性能相對差了許多的1950~1960年代電腦,只能得到十分貧乏的結果。
順帶一提,「人工智慧」(也就是Artificial Intelligence)一詞,就是在這個年代誕生的。第一波熱潮的AI概念,與目前科幻電影或動畫中的AI概念最為相近。
第二波熱潮開始於1980年代。當時人們在設計AI時,不只將邏輯輸入至機器(電腦),也會輸入知識。這種方式稱做專家系統,活躍於現代生產工廠,讓工廠中的機器手臂能夠專精某種特定工作。
第二波熱潮的AI之所以能成功,主因是記憶體與硬碟的大幅降價,降低了收納知識的工具成本。
不過,這種方法也沒有辦法實現AI(人工智慧)一詞原本的概念。專家系統無法產生能識別出貓咪這種複雜物體的「智能」。
現在的第三波熱潮起於「Cat Paper」發表的2012年之後。以讓機械(電腦)「自己從資料中學習」的概念開發AI,也就是深度學習活躍的開始。
如同我們之後會介紹的,深度學習是將人類腦神經細胞的網路(神經網路)模式化的AI實現方法。這樣的網路讓「自己從資料中學習」一事化為可能。
第三波AI熱潮之所以能夠實現,是因為我們能夠輕易獲得豐富資料,以及可以用便宜的價格買到能處理這些資料的硬體。
時機成熟的二十一世紀
現代AI的濫觴是「Cat Paper」,於2012年發表。為什麼是2012年呢?當然,Google公司的天才技術者在這年寫出相關演算法是原因之一。不過更重要的是「現代」這個時代背景。
如同我們前面提到的,要實現深度學習需要大量資料,以及能夠處理這些資料的強大計算能力。只有在現代科技的幫助下,才能同時達到這兩個條件。
我們可以從網路上輕易獲得大量資料。事實上,「Cat Paper」就是從YouTube上擷取了許多貓咪圖像,用來教AI「貓是什麼」。
另外,因應遊戲而開發出來的高速計算能力,也讓深度學習需要的龐大計算量成為可能。
GPU(Graphics Processing Unit)可以說是遊戲用電腦的必備品。GPU常翻譯做圖形處理器,是遊戲中處理圖形高速運動時不可或缺的裝置。而這個GPU也讓電腦能夠進行單純而龐大的AI計算。
「龐大的資料與強大的計算能力」,要是沒有這兩個條件,或許就不會出現「Cat Paper」了。
二十世紀的AI與二十一世紀的AI
AI需由電腦實現。如同我們前面提到的,二十世紀的AI基本上是由人類教導電腦該怎麼做。譬如當我們希望能用電腦識別某種物體時,會先寫出該物體的特徵,整理之後再輸入電腦。前面提到的第二世代AI的典型例子「專家系統」就是如此,如果使用者不是專家的話,就無法教導AI物體有哪些「特徵」。
不過,對象物體必須相對單純,專家才能夠「整理出物體的特徵」。要是對象是貓的話就不行了。即使有人寫出「貓的特徵」,整理後想輸入至電腦,也很難在電腦中表現出這些特徵。因為每一隻貓都各有不同,要判斷「該列入那些共通點做為貓的特徵」並不是件容易的事。
二十一世紀的AI則不需要由人鉅細靡遺的教導電腦,其基本概念是讓電腦「自己從資料中學習」。也就是說,二十世紀AI與二十一世紀AI的主要差異如下所示。
「二十世紀AI需由人教導電腦,二十一世紀AI則是讓電腦自行學習。」
第2章開始,我們會繼續說明「自己從資料中學習」是什麼意思。
~現在的AI熱潮要從2012年的「Cat Paper」開始說起~
報紙或電視節目幾乎每天都會提到與AI有關的話題,而深度學習正是引起這波AI熱潮的關鍵,使社會出現了很大的改變。
AI熱潮
AI是英語Artificial Intelligence的首字母簡稱,譯為人工智慧。
我們幾乎每天都可以在報紙或電視新聞上看到與AI有關的報導。
「AI自動駕駛即將實現。」
「AI在癌細胞的影像判讀上有很大的幫助。」
類似的例子不勝枚舉。
AI為什麼會在現在引起熱潮呢?在二十一世紀初期,有誰會想到有這樣的熱潮呢?
一切要從發表於2012年的「Cat Paper」開始說起。
「Cat Paper」與深度學習
事情發生在深度學習發表的那一年,也就是2012年。美國Google公司在這一年6月發表的研究結果中提到「在沒有他人幫助的情況下,AI成功自行識別出貓」。後來,這篇論文在AI界中被稱做Cat Paper。
Cat Paper之所以是劃時代的論文,是因為研究過程中研究人員完全沒有告訴電腦任何一個貓的特徵。電腦會自己分析出貓的特徵,之後就算看到完全沒看過的貓咪圖像,也能判斷「這就是貓」,這代表電腦已能「自己從資料中學習」。
再重複一次,Cat Paper之所以是劃時代的論文,是因為它「讓電腦能自己從資料中學習」。而這個「Cat Paper」所使用的方式就是Deep Learning,可譯為深度學習。而深度學習這個概念,正是改變時代的關鍵。在生產、流通、語言、交通、醫療、製藥、教育、軍事、照護等許多領域,都引起了革命性的改變。
2 深度學習與AI
~與過去的AI不一樣的地方在於「自己從資料中學習」
深度學習一詞常與AI同時出現。AI是二十世紀後半誕生的詞彙,讓我們回顧從那時到現代的歷史吧,這樣就能了解深度學習在AI中的定位了。
AI的歷史
AI並不是最近才成為熱門話題。以前的主流媒體界曾出現過兩波AI熱潮,現代則是第三波AI熱潮。
第一波熱潮發生於1950年代,是電腦開始於社會普及的時候。人們鉅細靡遺地告訴機器(電腦)各種計算方法,希望能夠創造出人工的智慧(也就是AI)。
這種設計AI的方式叫做規則主導法(rule based)。當時的人們樂觀地認為,只要單方面塞進許多邏輯、規則,就可以創造出「知性」,也就是智慧。
1950年代時,記憶體十分昂貴,且大容量的記憶媒體還沒出現,所以當時的人們只能希望透過塞入大量邏輯來實現知性。
「單靠邏輯實現『知性』」這種規則主導的方式,即使用在現代電腦上也無法成功。更不用說性能相對差了許多的1950~1960年代電腦,只能得到十分貧乏的結果。
順帶一提,「人工智慧」(也就是Artificial Intelligence)一詞,就是在這個年代誕生的。第一波熱潮的AI概念,與目前科幻電影或動畫中的AI概念最為相近。
第二波熱潮開始於1980年代。當時人們在設計AI時,不只將邏輯輸入至機器(電腦),也會輸入知識。這種方式稱做專家系統,活躍於現代生產工廠,讓工廠中的機器手臂能夠專精某種特定工作。
第二波熱潮的AI之所以能成功,主因是記憶體與硬碟的大幅降價,降低了收納知識的工具成本。
不過,這種方法也沒有辦法實現AI(人工智慧)一詞原本的概念。專家系統無法產生能識別出貓咪這種複雜物體的「智能」。
現在的第三波熱潮起於「Cat Paper」發表的2012年之後。以讓機械(電腦)「自己從資料中學習」的概念開發AI,也就是深度學習活躍的開始。
如同我們之後會介紹的,深度學習是將人類腦神經細胞的網路(神經網路)模式化的AI實現方法。這樣的網路讓「自己從資料中學習」一事化為可能。
第三波AI熱潮之所以能夠實現,是因為我們能夠輕易獲得豐富資料,以及可以用便宜的價格買到能處理這些資料的硬體。
時機成熟的二十一世紀
現代AI的濫觴是「Cat Paper」,於2012年發表。為什麼是2012年呢?當然,Google公司的天才技術者在這年寫出相關演算法是原因之一。不過更重要的是「現代」這個時代背景。
如同我們前面提到的,要實現深度學習需要大量資料,以及能夠處理這些資料的強大計算能力。只有在現代科技的幫助下,才能同時達到這兩個條件。
我們可以從網路上輕易獲得大量資料。事實上,「Cat Paper」就是從YouTube上擷取了許多貓咪圖像,用來教AI「貓是什麼」。
另外,因應遊戲而開發出來的高速計算能力,也讓深度學習需要的龐大計算量成為可能。
GPU(Graphics Processing Unit)可以說是遊戲用電腦的必備品。GPU常翻譯做圖形處理器,是遊戲中處理圖形高速運動時不可或缺的裝置。而這個GPU也讓電腦能夠進行單純而龐大的AI計算。
「龐大的資料與強大的計算能力」,要是沒有這兩個條件,或許就不會出現「Cat Paper」了。
二十世紀的AI與二十一世紀的AI
AI需由電腦實現。如同我們前面提到的,二十世紀的AI基本上是由人類教導電腦該怎麼做。譬如當我們希望能用電腦識別某種物體時,會先寫出該物體的特徵,整理之後再輸入電腦。前面提到的第二世代AI的典型例子「專家系統」就是如此,如果使用者不是專家的話,就無法教導AI物體有哪些「特徵」。
不過,對象物體必須相對單純,專家才能夠「整理出物體的特徵」。要是對象是貓的話就不行了。即使有人寫出「貓的特徵」,整理後想輸入至電腦,也很難在電腦中表現出這些特徵。因為每一隻貓都各有不同,要判斷「該列入那些共通點做為貓的特徵」並不是件容易的事。
二十一世紀的AI則不需要由人鉅細靡遺的教導電腦,其基本概念是讓電腦「自己從資料中學習」。也就是說,二十世紀AI與二十一世紀AI的主要差異如下所示。
「二十世紀AI需由人教導電腦,二十一世紀AI則是讓電腦自行學習。」
第2章開始,我們會繼續說明「自己從資料中學習」是什麼意思。