好書試閱

形狀


數學家通常都想很多,這是我們的習性。我們會分析對稱或相等這類大家都知道的基本概念,試圖找出更深層的意義。
形狀就是一個例子。我們多少都知道形狀是什麼。我們看到一個物體時,很容易就看得出它是圓形、方形還是其他形狀。但數學家會問:形狀是什麼?構成形狀的要素是什麼?我們以形狀分辨物體時,會忽略它的大小、色彩、用途、年代、重量、誰把它拿來的,以及最後誰要負責歸位。我們沒有忽略的是什麼?當我們說某樣東西是圓形時,看到的是什麼呢?
當然,這些問題沒什麼意義。就實際用途而言,我們對形狀的直覺理解就已經夠了─生活中沒有什麼重大決定是需要仰賴我們對於「形狀」的確切定義。但如果你有空又願意花時間來想一想,形狀倒是個很有趣的主題。
假設我們現在要思考了,我們或許會問自己這個問題:

世界上有幾種形狀?

這個問題很簡單,但不容易回答。這個問題有個比較精確和有限的說法,稱為廣義龐卡赫猜想(generalized Poincaré conjecture,或譯龐加萊猜想)。這個猜想提出至今已經超過一百年,目前還沒有人解答出來。嘗試過的人相當多,有一位數學家解出這個問題的大部分,因此獲得了100萬美元獎金,但還有許多種形狀沒有找到,所以目前我們還不知道世界上一共有幾種形狀。
我們來試著解答這個問題。世界上有幾種形狀?如果沒有更好的點子,有個不錯的方法是畫出一些形狀,看看會有什麼結果。

看來這個問題的答案取決於我們區分形狀的方式。大圓和小圓是相同的形狀嗎?波浪線(squiggle)應該全部算成一大類,還是應該依彎曲的方式細分?我們需要一種通用規則來解決這類爭議,才不用每次都需要停下來爭論。
可用於決定兩個形狀是否相同的規則相當多。如果是木匠或工程師,通常會希望規則既嚴謹又精確:必須長度、角度和曲線都完全相等,兩個形狀才算相同。這樣的規則屬於幾何學(geometry)這個數學領域。在這個領域裡,形狀嚴格又精確,經常做的事情是畫垂直線和計算面積等等。

但我們的要求比較寬鬆一點。我們想要找出所有可能的形狀,但沒時間慢慢區分幾千種不同的波浪線。我們想要的是在比較兩個形狀是否相同時比較寬鬆的規則,它能夠把所有的形狀分成若干類別,但類別的數量又不至於太多。


新規則

如果一個形狀不需要剪剪貼貼,只要拉伸或擠壓就能變成另一個形狀,則這兩個形狀相同。


這個規則是拓樸學(topology)的核心概念,拓樸學就像是比較寬鬆模糊的幾何學。在拓樸學中,形狀以極薄且可無限延展的材料形成,像橡皮或麵團一樣,可以任意拉扯、扭轉和改變。在拓樸學中,形狀的大小並不重要。

此外,正方形和矩形相同,圓形也和橢圓形相同。

現在奇怪的事情來了!如果用這個「拉伸或擠壓」規則來思考,圓形和正方形也是相同的形狀!

先別急著告訴朋友,我們看到有一本書上說正方形是圓形!別忘了:背景前提很重要。在拓樸學中,正方形確實是圓形,但在藝術或建築、日常對話,甚至幾何學中,正方形當然不可能是圓形。如果有一輛自行車的輪子是正方形,這輛自行車一定騎不遠。
但現在我們研究的是拓樸學,研究拓樸學時,我們不用理會揉一揉就會消失的尖角這類小細節。我們會忽視長度和角度、直線邊或曲線邊或波浪邊等外表的差異,只看形狀的核心,也就是構成這個形狀的基本特徵。拓樸學家觀察正方形或圓形時,看到的是一個封閉迴圈,其他的都只是我們拉伸或擠壓它所形成的特徵。
這就像問:「項鍊是什麼形狀?」項鍊用某種方式拿著就是正方形,換一種方式又變成圓形。但不管我們怎麼改變,項鍊都有個不會改變的基本形狀,無論是正方形、圓形、八角形、心形、新月形、水滴形,或是七百一十六邊形。

這個形狀有許多不同的形式,所以不能稱為圓形或正方形。我們有時稱它為圓形,但在拓樸學說法中,這種形狀的正式名稱是S1。S1是項鍊、手鐲或橡皮筋、跑道或賽車場、護城河或國家邊界(假設沒有阿拉斯加)、字母O和大寫D的形狀,或是任何形狀的封閉迴圈。如同正方形是一種特定的矩形,這些形狀也都是特定的S1。
還有其他形狀嗎?如果這個拉伸和擠壓規則太過寬鬆,結果把許多不同的形狀通通歸成一個大類,這樣也不行。還好這個規則不會這樣,還是有其他種形狀和圓形不同。
例如線:

一條線可以彎成接近圓形,但是要變成真正的圓形,線的兩頭必須接在一起,但這樣不行。無論我們如何彎轉一條線,線的兩端一定各有一個點,形狀就到此為止,這兩個端點不能去除。我們可以任意移動和拉遠端點,但端點是這個形狀不變的特徵。
同樣地,「8」也是另一個不同的形狀。8沒有端點,但中間有個特殊的交叉點,這個點有四條線向外延伸,而其他點則只有兩條線往外。無論怎麼拉伸和擠壓,都不可能使這個交叉點消失。
仔細想想,這個資訊已經足以讓我們回答「世界上有幾種形狀?」這個問題。答案是無限多種,以下是我的證明:

證明

我們觀察一下這組形狀。如果在原本的形狀上畫一筆,就會生成新的形狀。

每個新形狀都比前一個形狀有更多的交叉點和端點,所以一定是不同的新形狀。如果一直添加下去,將會得到無限多個不同的形狀,因此形狀有無限多種。

故得證


這樣可以接受嗎?我們要做的只是找出這樣一組無限多種形狀,而且它顯然能永遠不停地生成新形狀。

金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing