0916~0919_開學季語言展

挑戰大數據

達洋貓《櫻花樹》一卡通

達洋貓《櫻花樹》一卡通

【開學大作戰】一卡通全面限時9折起

  • 9 522
    580
  • 分類:
    中文書電腦資訊資料庫/大數據SQL Server
    追蹤
    ? 追蹤分類後,您會在第一時間收到分類新品通知。
  • 作者: 陸嘉恒 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
  • 出版社: 佳魁 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
  • 出版日:2015/03/23

活動訊息

想找書的時候,特別想偷看網友的書櫃... 原來大家都在看這本 ↓↓↓

用閱讀開啟視野,讓書成為照亮你人生的光
【金石堂選書】本月推薦您這些好書👉 快來看看

內容簡介

◎NoSQL 不是產品,而是一個當紅的概念,為雲端時代不間斷資料的儲存基礎
◎NoSQL 不是 No SQL,而是 Not Only SQL,不但保留了 SQL 的高邏輯性,更加上了分散式架構的強項
◎傳統關聯式資料庫(SQL)已存在30年,再面對全球每年100億顆硬碟的增長量已完全無法承載負擔
◎使用 NoSQL,用成千上萬的廉價 PC,就能保存及處理大數據,隨時擴充,不怕電腦當機
◎介紹全球目前當紅的各個 NoSQL,Cassendra (Facebook 使用)、BigTable(Google使用)、Redis(Flickr及新浪使用)

 面對全球每年將近100億顆資料的成長,大數據的資料處理早已成為顯學。隨著大數據的概念興起,各行各業也面臨到保存各種資料的難題。資料的保存不只是 保存而已,還必須成為資料倉儲(Data Warehouse)、資料分析、全文檢索、行為預測等功能的基礎。在傳統的關聯式資料庫(Oracle、MySQL、SQL Server)已老態龍鍾,或是需要高成本的伺服器來執行時,NoSQL 類的資料挾其水平擴充性(Scale out),使用一般PC就可擴充其功能的優勢,逐漸成為全球新寵。NoSQL 這個新興的觀念,已成為雲端時代的基本知識,本書可讓你快速上手大數據及 NoSQL,幫你成為雲端時代最性感行業(Sexiest Industry)的一員!

適合:對資料庫知識有一定了解者、或有較好的程式設計基礎和閱讀程式的能力、有一定Linux作業系統的基礎知識者

目錄

前言
01 概論
1.1 引子
1.2 巨量資料挑戰
1.3 巨量資料的儲存和管理
1.3.1 平行資料庫
1.3.2 NoSQL資料管理系統
1.3.3 NewSQL資料管理系統
1.3.4 雲端資料管理
1.4 巨量資料的處理和分析
1.5 小結
參考文獻

02 資料一致性理論
2.1 CAP理論
2.2 資料一致性模型
2.3 ACID與BASE
2.4 資料一致性實現技術
2.4.1 Quorum系統NRW策略
2.4.2 兩階段傳送協定
2.4.3 時間戳記策略
2.4.4 Paxos
2.4.5 向量時鐘
2.5 小結
參考文獻

03資料儲存模型
3.1 總論
3.2 鍵值儲存
3.2.1 Redis
3.2.2 Dynamo
3.3 列式儲存
3.3.1 Bigtable
3.3.2 Cassandra與HBase
3.4 文件儲存
3.4.1 MongoDB
3.4.2 CouchDB
3.5 圖形儲存
3.5.1 Neo4j
3.5.2 GraphDB
3.6 小結
參考文獻

04 資料分區與放置策略
4.1 分區的意義
4.1.1 為什麼要分區
4.1.2 分區的優點
4.2 範圍分區
4.3 列表分區
4.4 雜湊分區
4.5 三種分區的比較
4.6 放置策略
4.6.1 一致性雜湊演算法
4.6.2 容錯性與可擴充性分析
4.6.3 虛擬節點
4.7 小結
參考文獻

05 巨量資料處理方法
5.1 MapReduce簡介
5.2 MapReduce資料流程
5.3 MapReduce資料處理
5.3.1 傳送作業
5.3.2 初始化作業
5.3.3 分配工作
5.3.4 執行工作
5.3.5 更新工作執行進度和狀態
5.3.6 完成作業
5.4 Dryad簡介
5.4.1 DFS Cosmos介紹
5.4.2 Dryad執行引擎
5.4.3 DryadLINQ解釋引擎
5.4.4 DryadLINQ程式設計
5.5 Dryad資料處理步驟
5.6 MapReduce vs Dryad
5.7 小結
參考文獻

06 資料複製與容錯技術
6.1 巨量資料複製的作用和代價
6.2 巨量資料複製的策略
6.2.1 Dynamo的複寫原則
6.2.2 CouchDB的複寫原則
6.2.3 PNUTS的複寫原則
6.3 巨量資料的故障發現與處理
6.3.1 Dynamo的故障發現與處理
6.3.2 CouchDB的故障發現與處理
6.3.3 PNUTS的故障發現與處理
6.4 小結
參考文獻

07 資料壓縮技術
7.1 資料壓縮原理
7.1.1 資料壓縮的定義
7.1.2 資料為什麼可以壓縮
7.1.3 資料壓縮分類
7.2 傳統壓縮技術[1]
7.2.1 霍夫曼編碼
7.2.2 LZ77演算法
7.3 巨量資料帶來的3V挑戰
7.4 Oracle混合列壓縮
7.4.1 倉庫壓縮
7.4.2 歸檔壓縮
7.5 Google資料壓縮技術
7.5.1 尋找長的重複串
7.5.2 壓縮演算法
7.6 Hadoop壓縮技術
7.6.1 LZO簡介
7.6.2 LZO原理[5]
7.7 小結
參考文獻

08 快取技術
8.1 分散式快取簡介
8.1.1 分散式快取的產生
8.1.2 分散式快取的應用
8.1.3 分散式快取的效能
8.1.4 衡量可用性的標準
8.2 分散式快取的內部機制
8.2.1 生命期機制
8.2.2 一致性機制
8.2.3 直接讀取與直接寫入機制
8.2.4 查詢機制
8.2.5 事件觸發機制
8.3 分散式快取的拓撲結構
8.3.1 複製式拓撲
8.3.2 分割式拓撲
8.3.3 用戶端快取拓撲
8.4 小結
參考文獻

09 key-value資料庫
9.1 key-value模型綜述
9.2 Redis
9.2.1 Redis概述
9.2.2 Redis下載與安裝
9.2.3 Redis入門操作
9.2.4 Redis在業內的應用
9.3 Voldemort
9.3.1 Voldemort概述
9.3.2 Voldemort下載與安裝
9.3.3 Voldemort設定
9.3.4 Voldemort開發介紹[3]
9.4 小結
參考文獻

10 Column-Oriented資料庫
10.1 Column-Oriented資料庫簡介
10.2 Bigtable資料庫
10.2.1 Bigtable資料庫簡介
10.2.2 Bigtable資料模型
10.2.3 Bigtable基礎架構
10.3 Hypertable資料庫
10.3.1 Hypertable簡介
10.3.2 Hypertable安裝
10.3.3 Hypertable架構
10.3.4 Hypertable中的基本概念和原理
10.3.5 Hypertable的查詢
10.4 Cassandra資料庫
10.4.1 Cassandra簡介
10.4.2 Cassandra設定
10.4.3 Cassandra資料庫的連接
10.4.4 Cassandra叢集機制
10.4.5 Cassandra的讀/寫機制
10.5 小結
參考文獻

11 文件資料庫
11.1 文件資料庫簡介
11.2 CouchDB資料庫
11.2.1 CouchDB簡介
11.2.2 CouchDB安裝
11.2.3 CouchDB入門
11.2.4 CouchDB查詢
11.2.5 CouchDB的儲存結構
11.2.6 SQL和CouchDB
11.2.7 分散式環境中的CouchDB
11.3 MongoDB資料庫
11.3.1 MongoDB簡介
11

序/導讀

推薦序

你知道自己一天產生多少資料嗎?是的,你的活動和古時候的人沒什麼兩樣,當然你可以走的比古時候的人遠,因為有了高科技的交通工具,也因為高科技的影音及娛樂,你的日常生活也比古時候的人更豐富,但不管如何,還是脫離不了食衣住行育樂。

但你和古時候人最大的不同,就是他的一天過完就沒了,但你的一天卻產生了大量的「數位」資料。古時候的人頂多寫日記,這篇日記在以文字檔為主的資料庫中可能佔的空間接近0。但你我呢?

 就不要說照相攝影打卡這麼主動產生的資料了。你的上網記錄(IP、網站、停留時間、在頁面上駐點的位置);你的行動記錄(GPS位置經緯度、行車記錄器 的影像、到達處附近的景點、餐廳、銀行....)。你的購買記錄(金額、時間、消費種類、發生地點...)。全世界70億人每天活動的資料,早就因為數位 化及網路普及的關係,點點滴滴都以位元的方式存入「某個」儲存空間了。

根據Google前執行長史密特的說法,人類在2003年之後,每年產生的資料量,是人類歷史活動的總合至前一年的資料。換句話說,每年產生出有用沒用資料的數量是成指數成長的,如此一來,資料「放在哪」、「放得下」、「不會掉」,這三點非常重要!

 我們早就習慣雲端時代了,東西只要「放在雲端上」就好了。但從硬體的角度來看,資料還是放硬碟、光碟,資料的存取還是「電腦」,這些基本的硬體設備幾十 年來除了容量速度之外,原理還是沒什麼變,那我們要怎麼樣利用「軟體」的技術,將這些硬體重新排列組合,來應付每天產生2.5EB(2012年時的統計) 的資料呢?

以每年產生10ZB(2.5EB x 365天),又以指數方式成長的速度來看,人類的資料量在2020年前會到達YB等級,什麼是YB?

 這麼說吧,以目前大家常用的硬碟為1TB,那麼10ZB就是100億顆這個容量的硬碟,而且是每年100億顆。100顆硬碟有多少呢?可以繞地球 4000圈!這麼多硬碟,這麼多資料,還要備份,還要隨時可存取,還要從這麼多資料中找出有意義的資訊,這件事怎麼看,都是人類有史以來最大的工程!怎麼 辦呢?
 

這本書有你想知道的所有答案。


胡嘉璽

配送方式

  • 台灣
    • 國內宅配:本島、離島
    • 到店取貨:
      金石堂門市 不限金額免運費
      7-11便利商店 ok便利商店 萊爾富便利商店 全家便利商店
  • 海外
    • 國際快遞:全球
    • 港澳店取:
      ok便利商店 順豐 7-11便利商店

詳細資料

詳細資料

    • 語言
    • 中文繁體
    • 裝訂
    • 紙本平裝
    • ISBN
    • 9789863791270
    • 分級
    • 普通級
    • 頁數
    • 528
    • 商品規格
    • 23*17
    • 出版地
    • 台灣
    • 適讀年齡
    • 全齡適讀
    • 注音
    • 級別

商品評價

訂購/退換貨須知

加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:

加入金石堂LINE官方帳號『完成綁定』,隨時掌握出貨動態
金石堂LINE官方帳號綁定教學

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

退換貨須知:

**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**

  • 依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
    1. 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
    2. 依消費者要求所為之客製化給付。(客製化商品)
    3. 報紙、期刊或雜誌。(含MOOK、外文雜誌)
    4. 經消費者拆封之影音商品或電腦軟體。
    5. 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
    6. 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
  • 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
  • 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
  • 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing