Python深度學習
-
9折 558元
620元
-
預計最高可得金幣25點 ? 可100%折抵
活動加倍另計 -
HAPPY GO享100累1點 4點抵1元折抵無上限
-
分類:中文書>電腦資訊>APP開發/程式設計>Python追蹤? 追蹤分類後,您會在第一時間收到分類新品通知。
- 作者: Valentino Zocca 等 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
- 譯者:劉立民、吳建華、陳開煇
- 出版社: 博碩文化 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
- 出版日:2018/01/10
活動訊息
內容簡介
隨著普羅大眾對人工智慧的興趣日益濃厚,深度學習也引起了廣泛的關注。每一天都有許多深度學習的演算法被運用在不同的產業中。
本書將會為您提供有關該主題的所有實務資訊,包括最佳實作,使用真實世界的案例。您將學習到如何辨識和擷取資訊以便提高預測準確性,並最佳化結果。
從快速回顧重要的機器學習觀念開始,本書將使用scikit-learn來介紹深度學習的原理。然後,您也將學習到使用最新的開源函式庫,如Theano、Keras、Google的TensorFlow和H20。讀者可以使用本書當作一個指南,來找出模式辨識的困難之處,縮放數據以便得到更精確的結果,並討論深度學習演算法和技巧。
無論您是想深入了解深度學習,還是想要知道如何從這個強大的技術中獲得更多的資訊,您都可以從本書中學到這一切。
適用讀者
對機器學習觀念具有一些基本認識,對Python程式設計有一些經驗的數據科學從業人員,或是立志成為資料科學家的人。同時也需對微積分和統計學的基本觀念有相當程度的理解。
你能夠從本書學習到:
•深度學習演算的深入實務認識。
•進一步地以Theano、H2O、Keras和TensorFlow來學習深度學習。
•了解在許多深度學習實作的兩個最重要的核心技術:自動編碼器和受限玻爾茲曼機。
•介紹卷積類神經網路來處理電腦視覺。
•了解強化學習來處理棋盤遊戲與電動遊戲。
•遞迴類神經網路和長短期記憶網路來做語音辨識。
•以深度學習技術建立一個可擴充和生產就緒的異常偵測系統。
目錄
前言
第1章:機器學習簡介
什麼是「機器學習」?
不同的「機器學習」方法
第2章:類神經網路
為什麼是類神經網路?
基礎介紹
第3章:深度學習基礎
什麼是「深度學習」?
深度學習的應用
GPU與CPU
受歡迎的開源函式庫介紹
第4章:非監督式特徵學習
自動編碼器
受限玻爾茲曼機
第5章:影像辨識
人工模型與生物學模型之間的差異
卷積類神經網路的直觀理解與使用理由
卷積層
匯總層
退出
深度學習中的卷積層
Theano中的卷積網路
使用Keras的卷積層來做數字辨識
使用Keras的卷積層來對cifar10做辨識
預訓練
第6章:遞迴類神經網路和語言模型
遞迴類神經網路
語言塑模
語音辨識
第7章:棋盤遊戲的深度學習
早期具有 AI的遊戲
使用極小-極大演算法來給遊戲盤面定值
以Python實作Tic-Tac-Toe遊戲
學習一個估值函數
訓練AI成為圍棋大師
應用上限信賴界線於遊戲樹
蒙地卡羅樹搜索中的深度學習
強化學習的快速回顧
以策略梯度來學習策略函數
AlphaGo中的策略梯度
第8章:電腦遊戲的深度學習
以監督式學習方法處理電腦遊戲
運用基因演算法來玩遊戲
Q學習
Q學習實務
動態遊戲
Atari打磚塊
演員-評論家法
非同步法
以模型為基礎學習
第9章:異常偵測
什麼是「異常偵測」,什麼是「離群值偵測」?
真實世界中的異常偵測應用
受歡迎的淺層機器學習技術
使用「深度自動編碼器」來做「異常偵測」
H2O概觀
範例
第10章:建立一個生產就緒的 入侵偵測系統
什麼是數據產品?
訓練
測試
部署
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
詳細資料
詳細資料
-
- 語言
- 中文繁體
- 裝訂
- 紙本平裝
-
- ISBN
- 9789864342723
- 分級
- 普通級
-
- 頁數
- 408
- 商品規格
- 23*17
-
- 出版地
- 台灣
- 適讀年齡
- 全齡適讀
-
- 注音
- 級別
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價