架構資料與機器學習平台∣雲端啟動分析與AI驅動的創新
Architecting Data and Machine Learning Platforms
-
9折 702元
780元 - 認購希望書包,幫助弱勢兒安心開學!
-
預計最高可得金幣35點 ? 可100%折抵
活動加倍另計 -
HAPPY GO享100累1點 4點抵1元折抵無上限
- 作者: Marco Tranquillin,Valliappa Lakshmanan,Firat Tekiner 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
- 譯者:柳百郁
- 出版社: 歐萊禮 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
- 出版日:2025/04/24
內容簡介
內容簡介:🔹 全面掌握雲端資料與AI平台設計關鍵
🔹 實戰導向,靈活運用AWS、Azure、Google Cloud、Snowflake、Databricks
🔹 從基礎到進階,打造符合企業需求的現代化資料平台
🔹 強化資料治理,加速AI/ML創新,驅動決策智慧
無論你是資料架構師、工程師,或是希望運用AI強化決策的企業領導者,本書都將成為你打造未來資料與機器學習平台的最佳指南!
在資料驅動的時代,企業該如何善用資料創造價值?
本書由三位資深工程師聯手打造,為雲端架構師與資料專業人士提供了一套清晰完整的解決方案。從雲端資料平台的設計到AI與機器學習的整合,帶您走過資料現代化的每一步。無論是整合分散的資料、實現即時決策,還是利用AI解鎖創新潛力,本書都提供了實用的架構與工具,幫助你在雲端時代保持優勢。
-----------------------------------------------------------
「本書完整介紹,如何依據企業組織的策略方向,設計與建置現代雲端資料與ML平台的概念、模式與元件。真希望我能在多年前就能讀到這本書。」
—Robert Sahlin,Mathem資料平台主管
所有的雲端架構師都必須知道如何建置資料平台,以賦與企業能夠快速高效地做出資料驅動的決策,並在整個企業範圍內提供智能化服務。本書將展示如何使用AWS、Azure、Google Cloud以及Snowflake與Databricks這類多重雲端工具,設計、建置與現代化雲端原生資料與機器學習平台。
作者Marco Tranquillin、Valliappa Lakshmanan與Firat Tekiner使用真實世界企業架構來說明,內容涵蓋從雲端匯入到啟動整個資料生命週期。你將學到如何轉換、保全與現代化資料倉儲與資料湖這些熟悉的解決方案,也將能充份利用最新的AI/ML模式取得精準且快速的洞見,提升競爭優勢。
你將學會:
*設計現代化且安全的雲端原生或混合資料分析與機器學習平台
*透過將企業資料整合到治理良好、可擴充的與彈性的資料平台,加速資料導向的創新。
*民主化存取企業資料,治理業務團隊提取洞見方式與建置AI/ML的能力。
*讓您的企業利用串流管道即時決策
*建置MLOps平台,移往預測性與指示性分析
🔹 實戰導向,靈活運用AWS、Azure、Google Cloud、Snowflake、Databricks
🔹 從基礎到進階,打造符合企業需求的現代化資料平台
🔹 強化資料治理,加速AI/ML創新,驅動決策智慧
無論你是資料架構師、工程師,或是希望運用AI強化決策的企業領導者,本書都將成為你打造未來資料與機器學習平台的最佳指南!
在資料驅動的時代,企業該如何善用資料創造價值?
本書由三位資深工程師聯手打造,為雲端架構師與資料專業人士提供了一套清晰完整的解決方案。從雲端資料平台的設計到AI與機器學習的整合,帶您走過資料現代化的每一步。無論是整合分散的資料、實現即時決策,還是利用AI解鎖創新潛力,本書都提供了實用的架構與工具,幫助你在雲端時代保持優勢。
-----------------------------------------------------------
「本書完整介紹,如何依據企業組織的策略方向,設計與建置現代雲端資料與ML平台的概念、模式與元件。真希望我能在多年前就能讀到這本書。」
—Robert Sahlin,Mathem資料平台主管
所有的雲端架構師都必須知道如何建置資料平台,以賦與企業能夠快速高效地做出資料驅動的決策,並在整個企業範圍內提供智能化服務。本書將展示如何使用AWS、Azure、Google Cloud以及Snowflake與Databricks這類多重雲端工具,設計、建置與現代化雲端原生資料與機器學習平台。
作者Marco Tranquillin、Valliappa Lakshmanan與Firat Tekiner使用真實世界企業架構來說明,內容涵蓋從雲端匯入到啟動整個資料生命週期。你將學到如何轉換、保全與現代化資料倉儲與資料湖這些熟悉的解決方案,也將能充份利用最新的AI/ML模式取得精準且快速的洞見,提升競爭優勢。
你將學會:
*設計現代化且安全的雲端原生或混合資料分析與機器學習平台
*透過將企業資料整合到治理良好、可擴充的與彈性的資料平台,加速資料導向的創新。
*民主化存取企業資料,治理業務團隊提取洞見方式與建置AI/ML的能力。
*讓您的企業利用串流管道即時決策
*建置MLOps平台,移往預測性與指示性分析
目錄
第一章 資料平台現代化:簡介
第二章 資料創新的策略性作法
第三章 設計資料團隊
第四章 遷移框架
第五章 架構資料湖
第六章 企業資料倉儲的創新
第七章 湖倉融合
第八章 串流架構
第九章 混合與邊緣擴展資料平台
第十章 AI應用架構
第十一章 架構ML平台
第十二章 資料平台現代化:模型案例
第二章 資料創新的策略性作法
第三章 設計資料團隊
第四章 遷移框架
第五章 架構資料湖
第六章 企業資料倉儲的創新
第七章 湖倉融合
第八章 串流架構
第九章 混合與邊緣擴展資料平台
第十章 AI應用架構
第十一章 架構ML平台
第十二章 資料平台現代化:模型案例
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
詳細資料
詳細資料
-
- 語言
- 中文繁體
- 裝訂
- 紙本平裝
-
- ISBN
- 9786263249608
- 分級
- 普通級
-
- 頁數
- 336
- 商品規格
- 18開17*23cm
-
- 出版地
- 台灣
- 適讀年齡
- 全齡適讀
-
- 注音
- 級別
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價