時間數列分析:Excel與SPSS應用
活動訊息
內容簡介
所謂時間數列數據是「隨時間一起改變的數據」,此種數據不只在商學、工學上,即使在醫學上也是屢見不鮮的。
有關時間數列分析的中英文專書有不少,本書是以簡明的手冊型方式整理,這是本書有別他書之處。
本書的另一特色是不使用冗長的數理來表達,改以有速效之稱的軟體操作來說明,對急於想進行實證研究的人相信會有不少助益。
此外,時間數列的應用軟體市面上有不少,每種軟體均有其特色,本書採用SPSS來講解說明,除此之外,也介紹有EXCEL的使用。兩種應用軟體各有特色,搭配使用可收相輔相成之效
本書共分2篇,上篇是介紹EXCEL在時間數列上的應用,下篇是介紹SPSS在時間上的應用,使用本書熟悉兩種應用軟體之後,相信會對時間數列的研究有所助益。
有關時間數列分析的中英文專書有不少,本書是以簡明的手冊型方式整理,這是本書有別他書之處。
本書的另一特色是不使用冗長的數理來表達,改以有速效之稱的軟體操作來說明,對急於想進行實證研究的人相信會有不少助益。
此外,時間數列的應用軟體市面上有不少,每種軟體均有其特色,本書採用SPSS來講解說明,除此之外,也介紹有EXCEL的使用。兩種應用軟體各有特色,搭配使用可收相輔相成之效
本書共分2篇,上篇是介紹EXCEL在時間數列上的應用,下篇是介紹SPSS在時間上的應用,使用本書熟悉兩種應用軟體之後,相信會對時間數列的研究有所助益。
目錄
上篇:Excel應用
1.時間數列分析用語解說
1.1 意義及範圍
1.2 時間數列的特性
1.3 時間數列的種類
1.4 時間數列的組成分子
1.5 時間數列的模型種類
1.6 時間數列組成分子的估計方法
1.7 時間數列的迴歸分析法
1.8 平均法與平滑法
1.9 時間數列的變換方式
1.10 預測精確度的衡量
1.11 自我相關函數和偏自我相關函數
1.12 自我迴歸模型AR(p)
1.13 移動平均模型MA(q)
1.14 自我迴歸移動平均模型ARMA(p, q)
1.15 自我迴歸整合移動平均模型ARIMA(p, d, q)
1.16 相關係數
1.17 隨機漫步
1.18 白色干擾
1.19 傳遞函數
1.20 時間數列預測法的分類
1.21 模型的估計與選擇
1.22 自我迴歸的檢定
2.時間數列分析可以知道什麼?
2.1 如表現成圖形時
2.2 如採取移動平均來觀察時
2.3 如使用自我相關係數時
2.4 如使用交差相關係數時
2.5 如利用指數平滑化時
2.6 如利用自我迴歸模型時
2.7 利用季節性的分解時
2.8 如利用光譜分析時
3.時間數列圖形的畫法
3.1 時間數列數據與其圖形
3.2 時間數列圖形的畫法
4.時間數列數據的基本類型
4.1 3個基本類型
4.2 3個基本類型是重要理由
4.3 季節性的分解
5.長期趨勢簡介
5.1 長期趨勢或長期傾向
5.2 趨勢的檢定
6.利用曲線的適配預測明日
6.1 利用最小平方法的曲線適配
6.2 利用傅立葉級數的曲線適配
6.3 利用spline函數的曲線適配
6.4 曲線的適配與預測值的求法
7.週期變動與季節變動
7.1 週期變動
7.2 季節變動
7.3 光譜分析簡介
8.不規則變動與白色雜訊
8.1 不規則變動
8.2 不規則變動的製作方式
8.3 檢定隨機性
8.4 白色雜訊
9.時間數列數據的變換
9.1 取差分
9.2 進行移動平均
9.3 採取落後
9.4 進行對數變換
10.指數平滑化簡介
10.1 指數平滑化
10.2 利用指數平滑化的預測
11.自我相關係數簡介
11.1 自我相關係數
11.2 自我相關係數與相關圖
12.交差相關係數簡介
12.1 2個變數的時間數列數據
12.2 交差相關係數與先行指標
13.自我迴歸模型AR(p)簡介
13.1 自我迴歸模型
13.2 ARMA(p, q)模型
13.3 ARIMA(p, d, q)模型
13.4 Box-Jenkins法的例子
14.隨機漫步簡介
14.1 隨機漫步的作法
14.2 隨機漫步的預測值
15.時間數列數據的迴歸分析
15.1 迴歸分析與殘差的問題
15.2 利用自變數的自我迴歸模型
15.3 預測值的計算
16.傳遞函數簡介
16.1 何謂傳遞函數
16.2 各種傳遞函數的例子
下篇:SPSS應用
1.時間數列數據的輸入方式
1.1 時間數列分析的基本步驟
1.2 日期的定義
2.時間數列數據的變換方式
2.1 前言
2.2 利用差分製作新的時間數列
2.3 利用中心化平均製作新的時間數列
2.4 利用落後製作新的時間數列
3.時間數列數據的圖形表現方式
3.1 前言
3.2 時間數列圖形
4.自我相關、偏自我相關
4.1 前言
4.2 自我相關與偏自我相關
5.交叉相關
5.1 前言
5.2 交叉相關
6.光譜分析
6.1 前言
6.2 光譜(Spectral)分析
7.季節性的分解
7.1 前言
7.2 週期性的分解
8.指數平滑法
8.1 前言
8.2 指數平滑化
9.時間數列數據的迴歸分析
9.1 前言
9.2 時間數列數據的迴歸分析
9.3 自我相關的迴歸與複迴歸分析之不同
10.自我迴歸模式AR(p)
10.1 前言
10.2 自我迴歸模式AR(p)
11.移動平均模式MA(g)
11.1 前言
11.2 移動平均模式MA(q)
12.ARMA(p, q)模式
12.1 前言
12.2 ARMA(p, q)模式
13.ARIMA(p, d, q)模式
13.1 前言
13.2 ARIMA(p, d, q)模式
14.季節性ARIMA模式
─SARIMA(p, d, q), (P, D, Q)s
14.1 前言
14.2 季節性ARIMA模式
15.X12-ARIMA
15.1 X12-ARIMA簡介
15.2 NumXL簡介
15.3 分析方法
16.建立傳統模型
16.1 前言
16.2 求最適預測值的步驟
16.3 預測時選擇自變數的步驟
16.4 事件變數的利用法
17.套用傳統模型
17.1 前言
17.2 想利用相同的模式再延伸預測時的步驟
17.3 想比較2個腳本時的步驟
18.建立時間原因模型
18.1 簡介
18.2 目標數列已知時
18.3 若目標數列未知時
19.套用時間原因模型
19.1 簡介
19.2 時間原因模型預測
19.3 時間原因模型實務
19.4 求最適預測值的步驟
附錄 RIMA(p, d, q)模式的自我相關圖與偏自我相關圖
參考文獻
1.時間數列分析用語解說
1.1 意義及範圍
1.2 時間數列的特性
1.3 時間數列的種類
1.4 時間數列的組成分子
1.5 時間數列的模型種類
1.6 時間數列組成分子的估計方法
1.7 時間數列的迴歸分析法
1.8 平均法與平滑法
1.9 時間數列的變換方式
1.10 預測精確度的衡量
1.11 自我相關函數和偏自我相關函數
1.12 自我迴歸模型AR(p)
1.13 移動平均模型MA(q)
1.14 自我迴歸移動平均模型ARMA(p, q)
1.15 自我迴歸整合移動平均模型ARIMA(p, d, q)
1.16 相關係數
1.17 隨機漫步
1.18 白色干擾
1.19 傳遞函數
1.20 時間數列預測法的分類
1.21 模型的估計與選擇
1.22 自我迴歸的檢定
2.時間數列分析可以知道什麼?
2.1 如表現成圖形時
2.2 如採取移動平均來觀察時
2.3 如使用自我相關係數時
2.4 如使用交差相關係數時
2.5 如利用指數平滑化時
2.6 如利用自我迴歸模型時
2.7 利用季節性的分解時
2.8 如利用光譜分析時
3.時間數列圖形的畫法
3.1 時間數列數據與其圖形
3.2 時間數列圖形的畫法
4.時間數列數據的基本類型
4.1 3個基本類型
4.2 3個基本類型是重要理由
4.3 季節性的分解
5.長期趨勢簡介
5.1 長期趨勢或長期傾向
5.2 趨勢的檢定
6.利用曲線的適配預測明日
6.1 利用最小平方法的曲線適配
6.2 利用傅立葉級數的曲線適配
6.3 利用spline函數的曲線適配
6.4 曲線的適配與預測值的求法
7.週期變動與季節變動
7.1 週期變動
7.2 季節變動
7.3 光譜分析簡介
8.不規則變動與白色雜訊
8.1 不規則變動
8.2 不規則變動的製作方式
8.3 檢定隨機性
8.4 白色雜訊
9.時間數列數據的變換
9.1 取差分
9.2 進行移動平均
9.3 採取落後
9.4 進行對數變換
10.指數平滑化簡介
10.1 指數平滑化
10.2 利用指數平滑化的預測
11.自我相關係數簡介
11.1 自我相關係數
11.2 自我相關係數與相關圖
12.交差相關係數簡介
12.1 2個變數的時間數列數據
12.2 交差相關係數與先行指標
13.自我迴歸模型AR(p)簡介
13.1 自我迴歸模型
13.2 ARMA(p, q)模型
13.3 ARIMA(p, d, q)模型
13.4 Box-Jenkins法的例子
14.隨機漫步簡介
14.1 隨機漫步的作法
14.2 隨機漫步的預測值
15.時間數列數據的迴歸分析
15.1 迴歸分析與殘差的問題
15.2 利用自變數的自我迴歸模型
15.3 預測值的計算
16.傳遞函數簡介
16.1 何謂傳遞函數
16.2 各種傳遞函數的例子
下篇:SPSS應用
1.時間數列數據的輸入方式
1.1 時間數列分析的基本步驟
1.2 日期的定義
2.時間數列數據的變換方式
2.1 前言
2.2 利用差分製作新的時間數列
2.3 利用中心化平均製作新的時間數列
2.4 利用落後製作新的時間數列
3.時間數列數據的圖形表現方式
3.1 前言
3.2 時間數列圖形
4.自我相關、偏自我相關
4.1 前言
4.2 自我相關與偏自我相關
5.交叉相關
5.1 前言
5.2 交叉相關
6.光譜分析
6.1 前言
6.2 光譜(Spectral)分析
7.季節性的分解
7.1 前言
7.2 週期性的分解
8.指數平滑法
8.1 前言
8.2 指數平滑化
9.時間數列數據的迴歸分析
9.1 前言
9.2 時間數列數據的迴歸分析
9.3 自我相關的迴歸與複迴歸分析之不同
10.自我迴歸模式AR(p)
10.1 前言
10.2 自我迴歸模式AR(p)
11.移動平均模式MA(g)
11.1 前言
11.2 移動平均模式MA(q)
12.ARMA(p, q)模式
12.1 前言
12.2 ARMA(p, q)模式
13.ARIMA(p, d, q)模式
13.1 前言
13.2 ARIMA(p, d, q)模式
14.季節性ARIMA模式
─SARIMA(p, d, q), (P, D, Q)s
14.1 前言
14.2 季節性ARIMA模式
15.X12-ARIMA
15.1 X12-ARIMA簡介
15.2 NumXL簡介
15.3 分析方法
16.建立傳統模型
16.1 前言
16.2 求最適預測值的步驟
16.3 預測時選擇自變數的步驟
16.4 事件變數的利用法
17.套用傳統模型
17.1 前言
17.2 想利用相同的模式再延伸預測時的步驟
17.3 想比較2個腳本時的步驟
18.建立時間原因模型
18.1 簡介
18.2 目標數列已知時
18.3 若目標數列未知時
19.套用時間原因模型
19.1 簡介
19.2 時間原因模型預測
19.3 時間原因模型實務
19.4 求最適預測值的步驟
附錄 RIMA(p, d, q)模式的自我相關圖與偏自我相關圖
參考文獻
序/導讀
任誰都好想利用時光機器自由地穿越時空,瀏覽過去與未來,這是自H.G. Williams的小說《時光機器》與知名電影《回到未來》上市以來,我們夢寐以求的願望,但願美夢成真!那麼,時光機器如今有可能實現嗎?以取代時光機器穿越時光隧道來說,有無其他能自由且方便地駕馭時空的方法呢?
事實上是有的!此方法即為統計學中的「時間數列分析」(time series analysis)。若能搭配統計分析軟體,我們的時光之旅也能任意翱翔輕易實現。
話說,時間數列分析是處理時間數列數據的方法。所謂時間數列數據是「隨時間一起改變的數據」,此種數據不只在商學、工學上,即使在醫學上也是屢見不鮮。
時間數列數據的方法書中介紹甚多,像是「指數平滑化」或「自我迴歸模型」之類的方法,對掌握未來的變化都很有效。近年來,利用這些手法使預測變得可能,使未來變得有希望。那麼,我們不妨也試著利用「時間數列分析」來一趟時光之旅吧!
有關時間數列分析的中英文專書不少,本書是採簡明的手冊型,想了解時間數列的數理說明,可進一步參閱相關書籍。本書撰寫的方式是捨去冗長的數理表達,改以有速效之稱的軟體操作來說明,對急於想進行實證研究的人,相信會有不少助益。
此外,時間數列的應用軟體市面上也不少,每種軟體均有其特色,本書採用Excel與SPSS來講解說明。希望本書對您的研究分析有所貢獻。最後,書中若有誤植之處,還盼賢達不吝賜正。
楊秋月?‧?陳耀茂 謹誌
事實上是有的!此方法即為統計學中的「時間數列分析」(time series analysis)。若能搭配統計分析軟體,我們的時光之旅也能任意翱翔輕易實現。
話說,時間數列分析是處理時間數列數據的方法。所謂時間數列數據是「隨時間一起改變的數據」,此種數據不只在商學、工學上,即使在醫學上也是屢見不鮮。
時間數列數據的方法書中介紹甚多,像是「指數平滑化」或「自我迴歸模型」之類的方法,對掌握未來的變化都很有效。近年來,利用這些手法使預測變得可能,使未來變得有希望。那麼,我們不妨也試著利用「時間數列分析」來一趟時光之旅吧!
有關時間數列分析的中英文專書不少,本書是採簡明的手冊型,想了解時間數列的數理說明,可進一步參閱相關書籍。本書撰寫的方式是捨去冗長的數理表達,改以有速效之稱的軟體操作來說明,對急於想進行實證研究的人,相信會有不少助益。
此外,時間數列的應用軟體市面上也不少,每種軟體均有其特色,本書採用Excel與SPSS來講解說明。希望本書對您的研究分析有所貢獻。最後,書中若有誤植之處,還盼賢達不吝賜正。
楊秋月?‧?陳耀茂 謹誌
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價