ARTIFICIAL INTELLIGENCE: A MODERN APPROACH 4/E (GE)
活動訊息
想找書的時候,特別想偷看網友的書櫃... 原來大家都在看這本 ↓↓↓
內容簡介
The most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence
The long-anticipated revision of Artificial Intelligence: A Modern Approach explores the full breadth and depth of the field of artificial intelligence (AI). The 4th Edition brings readers up to date on the latest technologies, presents concepts in a more unified manner, and offers new or expanded coverage of machine learning, deep learning, transfer learning, multiagent systems, robotics, natural language processing, causality, probabilistic programming, privacy, fairness, and safe AI.
I Artificial Intelligence
1 Introduction
2 Intelligent Agents
II Problem-solving
3 Solving Problems by Searching
4 Search in Complex Environments
5 Constraint Satisfaction Problems
6 Adversarial Search and Games
III Knowledge, reasoning, and planning
7 Logical Agents
8 First-Order Logic
9 Inference in First-Order Logic
10 Knowledge Representation
11 Automated Planning
IV Uncertain knowledge and reasoning
12 Quantifying Uncertainty
13 Probabilistic Reasoning
14 Probabilistic Reasoning over Time
15 Making Simple Decisions
16 Making Complex Decisions
17 Multiagent Decision Making
18 Probabilistic Programming
V Machine Learning
19 Learning from Examples
20 Knowledge in Learning
21 Learning Probabilistic Models
22 Deep Learning
23 Reinforcement Learning
VI Communicating, perceiving, and acting
24 Natural Language Processing
25 Deep Learning for Natural Language Processing
26 Robotics
27 Computer Vision
VII Conclusions
28 Philosophy, Ethics, and Safety of AI
29 The Future of AI
Appendix A: Mathematical Background
Appendix B: Notes on Languages and Algorithms
Bibliography
Index
The long-anticipated revision of Artificial Intelligence: A Modern Approach explores the full breadth and depth of the field of artificial intelligence (AI). The 4th Edition brings readers up to date on the latest technologies, presents concepts in a more unified manner, and offers new or expanded coverage of machine learning, deep learning, transfer learning, multiagent systems, robotics, natural language processing, causality, probabilistic programming, privacy, fairness, and safe AI.
I Artificial Intelligence
1 Introduction
2 Intelligent Agents
II Problem-solving
3 Solving Problems by Searching
4 Search in Complex Environments
5 Constraint Satisfaction Problems
6 Adversarial Search and Games
III Knowledge, reasoning, and planning
7 Logical Agents
8 First-Order Logic
9 Inference in First-Order Logic
10 Knowledge Representation
11 Automated Planning
IV Uncertain knowledge and reasoning
12 Quantifying Uncertainty
13 Probabilistic Reasoning
14 Probabilistic Reasoning over Time
15 Making Simple Decisions
16 Making Complex Decisions
17 Multiagent Decision Making
18 Probabilistic Programming
V Machine Learning
19 Learning from Examples
20 Knowledge in Learning
21 Learning Probabilistic Models
22 Deep Learning
23 Reinforcement Learning
VI Communicating, perceiving, and acting
24 Natural Language Processing
25 Deep Learning for Natural Language Processing
26 Robotics
27 Computer Vision
VII Conclusions
28 Philosophy, Ethics, and Safety of AI
29 The Future of AI
Appendix A: Mathematical Background
Appendix B: Notes on Languages and Algorithms
Bibliography
Index
目錄
I Artificial Intelligence
1 Introduction
2 Intelligent Agents
II Problem-solving
3 Solving Problems by Searching
4 Search in Complex Environments
5 Constraint Satisfaction Problems
6 Adversarial Search and Games
III Knowledge, reasoning, and planning
7 Logical Agents
8 First-Order Logic
9 Inference in First-Order Logic
10 Knowledge Representation
11 Automated Planning
IV Uncertain knowledge and reasoning
12 Quantifying Uncertainty
13 Probabilistic Reasoning
14 Probabilistic Reasoning over Time
15 Making Simple Decisions
16 Making Complex Decisions
17 Multiagent Decision Making
18 Probabilistic Programming
V Machine Learning
19 Learning from Examples
20 Knowledge in Learning
21 Learning Probabilistic Models
22 Deep Learning
23 Reinforcement Learning
VI Communicating, perceiving, and acting
24 Natural Language Processing
25 Deep Learning for Natural Language Processing
26 Robotics
27 Computer Vision
VII Conclusions
28 Philosophy, Ethics, and Safety of AI
29 The Future of AI
Appendix A: Mathematical Background
Appendix B: Notes on Languages and Algorithms
Bibliography
Index
1 Introduction
2 Intelligent Agents
II Problem-solving
3 Solving Problems by Searching
4 Search in Complex Environments
5 Constraint Satisfaction Problems
6 Adversarial Search and Games
III Knowledge, reasoning, and planning
7 Logical Agents
8 First-Order Logic
9 Inference in First-Order Logic
10 Knowledge Representation
11 Automated Planning
IV Uncertain knowledge and reasoning
12 Quantifying Uncertainty
13 Probabilistic Reasoning
14 Probabilistic Reasoning over Time
15 Making Simple Decisions
16 Making Complex Decisions
17 Multiagent Decision Making
18 Probabilistic Programming
V Machine Learning
19 Learning from Examples
20 Knowledge in Learning
21 Learning Probabilistic Models
22 Deep Learning
23 Reinforcement Learning
VI Communicating, perceiving, and acting
24 Natural Language Processing
25 Deep Learning for Natural Language Processing
26 Robotics
27 Computer Vision
VII Conclusions
28 Philosophy, Ethics, and Safety of AI
29 The Future of AI
Appendix A: Mathematical Background
Appendix B: Notes on Languages and Algorithms
Bibliography
Index
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價