Data Science Crash Course for Beginners with Python
內容簡介
Data Science is here to stay. The tremendous growth in the volume, velocity, and variety of data has a substantial impact on every aspect of a business. While data continues to grow exponentially, accuracy remains a problem. This is where data scientists play a decisive role. A data scientist analyzes data, discovers new insights, paints a picture, and creates a vision. And a competent data scientist will provide a business with the competitive edge it needs and address pressing business problems. Data Science Crash Course for Beginners with Python presents you with a hands-on approach to learn data science fast.How Is This Book Different?
Every book by AI Publishing has been carefully crafted. This book lays equal emphasis on the theoretical sections as well as the practical aspects of data science. Each chapter provides the theoretical background behind the numerous data science techniques, and practical examples explain the working of these techniques. In the Further Reading section of each chapter, you will find the links to informative data science posts. This book presents you with the tools and packages you need to kick-start data science projects to resolve problems of practical nature. Special emphasis is laid on the main stages of a data science pipeline-data acquisition, data preparation, exploratory data analysis, data modeling and evaluation, and interpretation of the results. In the Data Science Resources section, links to data science resources, articles, interviews, and data science newsletters are provided. The author has also put together a list of contests and competitions that you can try on your own. Another added benefit of buying this book is you get instant access to all the learning material presented with this book- PDFs, Python codes, exercises, and references-on the publisher's website. They will not cost you an extra cent. The datasets used in this book can be downloaded at runtime, or accessed via the Resources/Datasets folder. The author simplifies your learning by holding your hand through everything. The step by step description of the installation of the software you need for implementing the various data science techniques in this book is guaranteed to make your learning easier. So, right from the beginning, you can experiment with the practical aspects of data science. You'll also find the quick course on Python programming in the second and third chapters immensely helpful, especially if you are new to Python. This book gives you access to all the codes and datasets. So, access to a computer with the internet is sufficient to get started.
The topics covered include: Introduction to Data Science and Decision MakingPython Installation and Libraries for Data ScienceReview of Python for Data ScienceData AcquisitionData Preparation (Preprocessing)Exploratory Data AnalysisData Modeling and Evaluation Using Machine LearningInterpretation and Reporting of FindingsData Science ProjectsKey Insights and Further AvenuesClick the BUY button to start your Data Science journey.
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:
商品運送說明:
- 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
- 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
- 當廠商出貨後,您會收到E-mail出貨通知,您也可透過【訂單查詢】確認出貨情況。
- 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
- 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
- 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。
提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。





商品評價