Prediction of Type 2 Diabetes Mellitus Using Machine Learning Techniques
-
9折 1008元
1120元
-
預計最高可得金幣50點
?
可100%折抵
活動加倍另計 -
HAPPY GO享100累1點 4點抵1元 折抵無上限
-
分類:英文書>健康生活>醫療保健>基礎醫學追蹤? 追蹤分類後,您會在第一時間收到分類新品通知。
- 作者: M Ashok,Kumar 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
- 出版社: Mohd Abdul Hafi 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
- 出版日:2022/08/22
內容簡介
Among those critical diseases, Diabetes Mellitus is one of the
chronic diseases which affect human well-being at a young stage. The
chronic metabolic disorder diabetes mellitus is a rapidly growing global
challenge imposing massive socio-economic and health hazards. It has been
estimated that by the year 2020 there are nearly 285 million people (close to
6.4% of the adult age group) who are affected by this disease. This number
has been estimated to rise to 430 million with no better control or treatment
available. This rise in the rates in developing countries adopts the trend
changes in urbanization and lifestyle, which includes a "western-style" diet
also. This is due to the awareness being low . An aging population and
obesity constitute are the primary reasons for the rise.
In order to examine the high-risk population group of Diabetes
Mellitus (DM), modern information technology has to be used. Data mining
also called Knowledge Discovery in Databases (KDD) is defined to be the
computational process of finding the patterns in massive datasets that include
techniques intersecting Artificial Intelligence, Machine Learning, Statistics,
and Database Systems. The important objectives of these techniques include
Pattern Identification, Prediction, Association, and Clustering. Data
mining consists of a set of steps executed either automatically or semi-automatically
for extracting and finding intriguing, unknown, unseen features
from a paramount volume of data. The superior quality of data and the rightly
used technique are the two important concepts of data mining principle.
Several computational approaches have been designed for the
classification of diabetes occurs in humans. The usage of Machine Learning
in the medical information system has been found to be advantageous since it
improves the diagnostic accuracy, minimizes the expenditure, and also
increases the number of treatments that have been successful for diabetes
mellitus . For the automation of the overall process of diabetes prediction
and severity estimation, a diabetic database is required. This archive of the
diabetic database aids in identifying the effect of diabetes on different human
organs.
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:
商品運送說明:
- 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
- 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
- 當廠商出貨後,您會收到E-mail出貨通知,您也可透過【訂單查詢】確認出貨情況。
- 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
- 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
- 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。
提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。



商品評價