1103~1105_神奇柑仔店1920完結篇

The Machine Learning Solutions Architect Handbook - Second Edition

The Machine Learning Solutions Architect Handbook - Second Edition
預購

方坊 金屬壓克力掛飾 25mm-喜寶(導角款)

方坊 金屬壓克力掛飾 25mm-喜寶(導角款)

【週年慶】情緒小夥伴全面9折

  • 9 1904
    2115
  • 分類:
    英文書自然科普電腦資訊電機
    追蹤
    ? 追蹤分類後,您會在第一時間收到分類新品通知。
  • 作者: David,Ping 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
  • 出版社: Packt 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
  • 出版日:2024/04/15
  • 信用卡分期: 60利率  每期 317更多分期
    分期價:除不盡餘數於第一期收取
    30利率 每期635 接受26 家銀行
    60利率 每期317 接受26 家銀行
    30利率  接受26家銀行
    土地銀行、合作金庫、第一銀行、華南銀行、上海銀行、台北富邦、兆豐商銀、花旗(台灣)銀行、澳盛銀行、臺灣企銀、渣打商銀、滙豐(台灣)銀行、臺灣新光商銀、陽信銀行、三信銀行、聯邦銀行、遠東銀行、元大銀行、永豐銀行、玉山銀行、星展銀行、台新銀行、日盛銀行、安泰銀行、中國信託、台灣樂天
    60利率  接受26家銀行
    土地銀行、合作金庫、第一銀行、華南銀行、上海銀行、台北富邦、兆豐商銀、花旗(台灣)銀行、澳盛銀行、臺灣企銀、渣打商銀、滙豐(台灣)銀行、臺灣新光商銀、陽信銀行、三信銀行、聯邦銀行、遠東銀行、元大銀行、永豐銀行、玉山銀行、星展銀行、台新銀行、日盛銀行、安泰銀行、中國信託、台灣樂天
    120利率  接受26家銀行
    土地銀行、合作金庫、第一銀行、華南銀行、上海銀行、台北富邦、兆豐商銀、花旗(台灣)銀行、澳盛銀行、臺灣企銀、渣打商銀、滙豐(台灣)銀行、臺灣新光商銀、陽信銀行、三信銀行、聯邦銀行、遠東銀行、元大銀行、永豐銀行、玉山銀行、星展銀行、台新銀行、日盛銀行、安泰銀行、中國信託、台灣樂天
    240利率  接受22家銀行
    土地銀行、合作金庫、第一銀行、華南銀行、上海銀行、台北富邦、花旗(台灣)銀行、澳盛銀行、臺灣企銀、渣打商銀、滙豐(台灣)銀行、臺灣新光商銀、陽信銀行、聯邦銀行、遠東銀行、元大銀行、玉山銀行、星展銀行、台新銀行、日盛銀行、安泰銀行、中國信託
  • ※ 金石堂網書25週年慶
    購買後進貨 

活動訊息

金石堂,總有一本書懂你!雙11更好買,25家銀行信用卡分期0利率!

內容簡介

Design, build, and secure scalable machine learning (ML) systems to solve real-world business problems with Python and AWS

Purchase of the print or Kindle book includes a free PDF eBookKey FeaturesGo in-depth into the ML lifecycle, from ideation and data management to deployment and scalingApply risk management techniques in the ML lifecycle and design architectural patterns for various ML platforms and solutionsUnderstand the generative AI lifecycle, its core technologies, and implementation risksBook Description

David Ping, Head of GenAI and ML Solution Architecture for global industries at AWS, provides expert insights and practical examples to help you become a proficient ML solutions architect, linking technical architecture to business-related skills.

You'll learn about ML algorithms, cloud infrastructure, system design, MLOps, and how to apply ML to solve real-world business problems. David explains the generative AI project lifecycle and examines Retrieval Augmented Generation (RAG), an effective architecture pattern for generative AI applications. You'll also learn about open-source technologies, such as Kubernetes/Kubeflow, for building a data science environment and ML pipelines before building an enterprise ML architecture using AWS. As well as ML risk management and the different stages of AI/ML adoption, the biggest new addition to the handbook is the deep exploration of generative AI.

By the end of this book, you'll have gained a comprehensive understanding of AI/ML across all key aspects, including business use cases, data science, real-world solution architecture, risk management, and governance. You'll possess the skills to design and construct ML solutions that effectively cater to common use cases and follow established ML architecture patterns, enabling you to excel as a true professional in the field.What you will learnApply ML methodologies to solve business problems across industriesDesign a practical enterprise ML platform architectureGain an understanding of AI risk management frameworks and techniquesBuild an end-to-end data management architecture using AWSTrain large-scale ML models and optimize model inference latencyCreate a business application using artificial intelligence services and custom modelsDive into generative AI with use cases, architecture patterns, and RAGWho this book is for

This book is for solutions architects working on ML projects, ML engineers transitioning to ML solution architect roles, and MLOps engineers. Additionally, data scientists and analysts who want to enhance their practical knowledge of ML systems engineering, as well as AI/ML product managers and risk officers who want to gain an understanding of ML solutions and AI risk management, will also find this book useful. A basic knowledge of Python, AWS, linear algebra, probability, and cloud infrastructure is required before you get started with this handbook.Table of ContentsNavigating the ML Lifecycle with ML Solutions ArchitectureExploring ML Business Use CasesExploring ML AlgorithmsData Management for MLExploring Open-Source ML LibrariesKubernetes Container Orchestration Infrastructure ManagementOpen-Source ML PlatformsBuilding a Data Science Environment using AWS ML ServicesDesigning an Enterprise ML Architecture with AWS ML ServicesAdvanced ML EngineeringBuilding ML Solutions with AWS AI ServicesAI Risk ManagementBias, Explainability, Privacy, and Adversarial Attacks

(N.B. Please use the Read Sample option to see further chapters)

配送方式

  • 台灣
    • 國內宅配:本島、離島
    • 到店取貨:
      金石堂門市 不限金額免運費
      7-11便利商店 ok便利商店 萊爾富便利商店 全家便利商店
  • 海外
    • 國際快遞:全球
    • 港澳店取:
      ok便利商店 順豐 7-11便利商店

詳細資料

詳細資料

    • 語言
    • 英文
    • 裝訂
    • 紙本平裝
    • ISBN
    • 9781805122500
    • 分級
    • 普通級
    • 頁數
    • 0
    • 商品規格
    • 出版地
    • 美國
    • 適讀年齡
    • 全齡適讀
    • 注音
    • 級別

商品評價

訂購/退換貨須知

加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:

加入金石堂LINE官方帳號『完成綁定』,隨時掌握出貨動態
金石堂LINE官方帳號綁定教學

商品運送說明:

  • 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
  • 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
  • 當廠商出貨後,您會收到E-mail出貨通知,您也可透過【訂單查詢】確認出貨情況。
  • 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
  • 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
  • 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

退換貨須知:

**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**

  • 依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
    1. 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
    2. 依消費者要求所為之客製化給付。(客製化商品)
    3. 報紙、期刊或雜誌。(含MOOK、外文雜誌)
    4. 經消費者拆封之影音商品或電腦軟體。
    5. 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
    6. 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
  • 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
  • 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
  • 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
※ 金石堂網書25週年慶
購買後進貨 
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing