Deep Reinforcement Learning Hands-On - Third Edition
內容簡介
Maxim Lapan delivers intuitive explanations and insights into complex reinforcement learning (RL) concepts, starting from the basics of RL on simple environments and tasks to modern, state-of-the-art methods
Purchase of the print or Kindle book includes a free PDF eBook
Key Features:
- Learn with concise explanations, modern libraries, and diverse applications from games to stock trading and web navigation
- Develop deep RL models, improve their stability, and efficiently solve complex environments
- New content on RL from human feedback (RLHF), MuZero, and transformers
Book Description:
Reward yourself and take this journey into RL with the third edition of Deep Reinforcement Learning Hands-On. The book takes you through the basics of RL to more advanced concepts with the help of various applications, including game playing, discrete optimization, stock trading, and web browser navigation. By walking you through landmark research papers in the field, this deep reinforcement learning book will equip you with the practical know-how of RL and the theoretical foundation to understand and implement most modern RL papers.
The book retains its strengths by providing concise and easy-to-follow explanations. You'll work through practical and diverse examples, from grid environments and games to stock trading and RL agents in web environments, to give you a well-rounded understanding of RL, its capabilities, and use cases. You'll learn about key topics, such as deep Q-networks (DQNs), policy gradient methods, continuous control problems, and highly scalable, non-gradient methods.
If you want to learn about RL using a practical approach using OpenAI Gym and PyTorch, concise explanations, and the incremental development of topics, then Deep Reinforcement Learning Hands-On, Third Edition is your ideal companion
What You Will Learn:
- Stay on the cutting edge with new content on MuZero, RL with human feedback, and LLMs
- Evaluate RL methods, including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, and D4PG
- Implement RL algorithms using PyTorch and modern RL libraries
- Build and train deep Q-networks to solve complex tasks in Atari environments
- Speed up RL models using algorithmic and engineering approaches
- Leverage advanced techniques like proximal policy optimization (PPO) for more stable training
Who this book is for:
This book is ideal for machine learning engineers, software engineers, and data scientists looking to learn and apply deep reinforcement learning in practice. It assumes familiarity with Python, calculus, and machine learning concepts. With practical examples and high-level overviews, it's also suitable for experienced professionals looking to deepen their understanding of advanced deep RL methods and apply them across industries, such as gaming and finance
Table of Contents
- What Is Reinforcement Learning?
- OpenAI Gym
- Deep Learning with PyTorch
- The Cross-Entropy Method
- Tabular Learning and the Bellman Equation
- Deep Q-Networks
- Higher-Level RL Libraries
- DQN Extensions
- Ways to Speed up RL
- Stocks Trading Using RL
- Policy Gradients - an Alternative
- Actor-Critic Methods - A2C and A3C
- The TextWorld Environment
- Web Navigation
- Continuous Action Space
- Trust Regions - PPO, TRPO, ACKTR, and SAC
- Black-Box Optimization in RL
- Advanced Exploration
- RL with Human Feedback
- MuZero
- RL in Discrete Optimization
- Multi-agent RL
- RL in Robotics
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:
商品運送說明:
- 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
- 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
- 當廠商出貨後,您會收到E-mail出貨通知,您也可透過【訂單查詢】確認出貨情況。
- 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
- 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
- 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。
提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。



商品評價