Elliptic Curve Cryptography for Developers
Elliptic Curve Cryptography for Developers
-
9折 2753元
3059元
-
預計最高可得金幣135點
?
可100%折抵
活動加倍另計 -
HAPPY GO享100累1點 4點抵1元 折抵無上限
-
分類:英文書>自然科普>電腦資訊>網路/網路安全追蹤? 追蹤分類後,您會在第一時間收到分類新品通知。
- 作者: Michael,Rosing 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
- 出版社: Manning Publications 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
- 出版日:2024/11/06
內容簡介
Make your public key protocols smaller and more secure with this accessible guide to Elliptic Curve Cryptography. Elliptic Curve Cryptography for Developers introduces the mathematics of elliptic curves--a powerful alternative to the prime number-based RSA encryption standard. You'll learn to deliver zero-knowledge proofs and aggregated multi-signatures that are not even possible with RSA mathematics. All you need is the basics of calculus you learned in high school. Elliptic Curve Cryptography for Developers includes: - Clear, well-illustrated introductions to key ECC concepts
- Implementing efficient digital signature algorithms
- State of the art zero-knowledge proofs
- Blockchain applications with ECC-backed security The book gradually introduces the concepts and subroutines you'll need to master with diagrams, flow charts, and accessible language. Each chapter builds on what you've already learned, with step-by-step guidance until you're ready to write embedded systems code with advanced mathematical algorithms. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology The Elliptic Curve Cryptography (ECC) protocol secures everything from credit card transactions to the blockchain. With a little C code, high school calculus, and the techniques in this book, you can implement ECC cryptographic protocols that are smaller and more secure than the RSA-based systems in common use today. About the book Elliptic Curve Cryptography for Developers teaches you how ECC protocols work and how to implement them seamlessly in C code. Unlike academic cryptography books, this practical guide sticks to the minimum math and theory you need to get the job done. Author Mike Rosing illustrates each concept with clear graphics, detailed code, and hands-on exercises. As you go, you'll practice what you learn by building two encryption systems for a blockchain application. What's inside - Efficient digital signature algorithms
- Zero-knowledge proofs
- ECC security for blockchain applications About the reader Readers need to understand basic calculus. Examples in C. About the author Michael Rosing's career as a scientist, hardware engineer, and software developer includes high-energy physics, telephone switch engineering, and developing vision devices for the blind. The technical editor on this book was Mark Bissen. Table of Contents 1 Pairings over elliptic curves in cryptography
Part 1
2 Description of finite field mathematics
3 Explaining the core of elliptic curve mathematics
4 Key exchange using elliptic curves
5 Prime field elliptic curve digital signatures explained
6 Finding good cryptographic elliptic curves
Part 2
7 Description of finite field polynomial math
8 Multiplication of polynomials explained
9 Computing powers of polynomials
10 Description of polynomial division using Euclid's algorithm
11 Creating irreducible polynomials
12 Taking square roots of polynomials
Part 3
13 Finite field extension curves described
14 Finding low embedding degree elliptic curves
15 General rules of elliptic curve pairing explained
16 Weil pairing defined
17 Tate pairing defined
18 Exploring BLS multi-signatures
19 Proving knowledge and keeping secrets: Zero knowledge using pairings
Appendix A Code and tools
Appendix B Hilbert class polynomials
Appendix C Variables list
- Implementing efficient digital signature algorithms
- State of the art zero-knowledge proofs
- Blockchain applications with ECC-backed security The book gradually introduces the concepts and subroutines you'll need to master with diagrams, flow charts, and accessible language. Each chapter builds on what you've already learned, with step-by-step guidance until you're ready to write embedded systems code with advanced mathematical algorithms. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology The Elliptic Curve Cryptography (ECC) protocol secures everything from credit card transactions to the blockchain. With a little C code, high school calculus, and the techniques in this book, you can implement ECC cryptographic protocols that are smaller and more secure than the RSA-based systems in common use today. About the book Elliptic Curve Cryptography for Developers teaches you how ECC protocols work and how to implement them seamlessly in C code. Unlike academic cryptography books, this practical guide sticks to the minimum math and theory you need to get the job done. Author Mike Rosing illustrates each concept with clear graphics, detailed code, and hands-on exercises. As you go, you'll practice what you learn by building two encryption systems for a blockchain application. What's inside - Efficient digital signature algorithms
- Zero-knowledge proofs
- ECC security for blockchain applications About the reader Readers need to understand basic calculus. Examples in C. About the author Michael Rosing's career as a scientist, hardware engineer, and software developer includes high-energy physics, telephone switch engineering, and developing vision devices for the blind. The technical editor on this book was Mark Bissen. Table of Contents 1 Pairings over elliptic curves in cryptography
Part 1
2 Description of finite field mathematics
3 Explaining the core of elliptic curve mathematics
4 Key exchange using elliptic curves
5 Prime field elliptic curve digital signatures explained
6 Finding good cryptographic elliptic curves
Part 2
7 Description of finite field polynomial math
8 Multiplication of polynomials explained
9 Computing powers of polynomials
10 Description of polynomial division using Euclid's algorithm
11 Creating irreducible polynomials
12 Taking square roots of polynomials
Part 3
13 Finite field extension curves described
14 Finding low embedding degree elliptic curves
15 General rules of elliptic curve pairing explained
16 Weil pairing defined
17 Tate pairing defined
18 Exploring BLS multi-signatures
19 Proving knowledge and keeping secrets: Zero knowledge using pairings
Appendix A Code and tools
Appendix B Hilbert class polynomials
Appendix C Variables list
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:
商品運送說明:
- 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
- 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
- 當廠商出貨後,您會收到E-mail出貨通知,您也可透過【訂單查詢】確認出貨情況。
- 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
- 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
- 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。
提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。



商品評價