Applied Natural Language Processing with PyTorch 2.0
Applied Natural Language Processing with PyTorch 2.0
-
9折 1479元
1643元
-
預計最高可得金幣70點
?
可100%折抵
活動加倍另計 -
HAPPY GO享100累1點 4點抵1元 折抵無上限
-
分類:英文書>自然科普>電腦資訊>網路/網路安全追蹤? 追蹤分類後,您會在第一時間收到分類新品通知。
- 作者: Deepti,Chopra 追蹤 ? 追蹤作者後,您會在第一時間收到作者新書通知。
- 出版社: Orange Education Pvt Ltd 追蹤 ? 追蹤出版社後,您會在第一時間收到出版社新書通知。
- 出版日:2025/01/27
內容簡介
Unlock the Power of PyTorch 2.0 for Next-Level Natural Language Processing. Discover how to bring applied natural language processing with PyTorch 2.0 to life and gain proficiency in advanced NLP techniques for scalable AI models. This comprehensive, easy-to-follow guide is packed with real-world text classification and sentiment analysis projects, step-by-step instructions for machine translation and text generation, and best practices for training and evaluating NLP models with PyTorch. Book Description Natural Language Processing (NLP) is revolutionizing industries, from chatbots to data insights. PyTorch 2.0 offers the tools to build powerful NLP models. Applied Natural Language Processing with PyTorch 2.0 provides a practical guide to mastering NLP with this advanced framework. This book starts with a strong foundation in NLP concepts and the essentials of PyTorch 2.0, ensuring that you are well-equipped to tackle advanced topics. It covers key techniques such as transformer models, pre-trained language models, sequence-to-sequence models, and more. Each chapter includes hands-on examples and code implementations for real-world application. With a focus on practical use cases, the book explores NLP tasks like sentiment analysis, text classification, named entity recognition, machine translation, and text generation. You'll learn how to preprocess text, design neural architectures, train models, and evaluate results. Whether you're a beginner or an experienced professional, this book will empower you to develop advanced NLP models and solutions. Get started today and unlock the potential of NLP with PyTorch 2.0! What You'll Learn Inside: Implement sequence-to-sequence models in PyTorch 2.0 for neural network text solutionsStep-by-step lessons on sentiment analysis in Python and text classification with PyTorch to solve real business challengesComprehensive applied NLP guide covering preprocessing text data for neural architecturesActionable examples of named entity recognition, information extraction, and NLP case studiesMaster transformer models and pre-trained language models in NLP for state-of-the-art resultsInsights on building and tuning deep learning NLP pipelines for practical deploymentsSee future trends and innovations in Python NLP books for continued skill developmentWho Should Read This Book?Data scientists, engineers, and developers searching for an up-to-date PyTorch NLP book and applied NLP guidePython enthusiasts eager to apply sentiment analysis, machine translation NLP, and sequence models in real projectsProfessionals and students seeking to master neural network text understanding and deep learning solutions.Why This Guide?All information is authentic and policy-compliant-no unauthorized brands or characters are usedOptimized for Amazon search and human readability, using established keywords for higher ranking and conversionWritten in a clear, natural style suited for both advanced and beginning practitioners
Start mastering applied NLP techniques with PyTorch 2.0-build scalable, production-ready AI models today! Table of Contents
1. Introduction to Natural Language Processing
2. Getting Started with PyTorch
3. Text Preprocessing
4. Building NLP Models with PyTorch
5. Advanced NLP Techniques with PyTorch
6. Model Training and Evaluation
7. Improving NLP Models with PyTorch
8. Deployment and Productionization
9. Case Studies and Practical Examples
10. Future Trends in Natural Language Processing and PyTorch
Index
Start mastering applied NLP techniques with PyTorch 2.0-build scalable, production-ready AI models today! Table of Contents
1. Introduction to Natural Language Processing
2. Getting Started with PyTorch
3. Text Preprocessing
4. Building NLP Models with PyTorch
5. Advanced NLP Techniques with PyTorch
6. Model Training and Evaluation
7. Improving NLP Models with PyTorch
8. Deployment and Productionization
9. Case Studies and Practical Examples
10. Future Trends in Natural Language Processing and PyTorch
Index
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:
商品運送說明:
- 本公司所提供的產品配送區域範圍目前僅限台灣本島。注意!收件地址請勿為郵政信箱。
- 商品將由廠商透過貨運或是郵局寄送。消費者訂購之商品若無法送達,經電話或 E-mail無法聯繫逾三天者,本公司將取消該筆訂單,並且全額退款。
- 當廠商出貨後,您會收到E-mail出貨通知,您也可透過【訂單查詢】確認出貨情況。
- 產品顏色可能會因網頁呈現與拍攝關係產生色差,圖片僅供參考,商品依實際供貨樣式為準。
- 如果是大型商品(如:傢俱、床墊、家電、運動器材等)及需安裝商品,請依商品頁面說明為主。訂單完成收款確認後,出貨廠商將會和您聯繫確認相關配送等細節。
- 偏遠地區、樓層費及其它加價費用,皆由廠商於約定配送時一併告知,廠商將保留出貨與否的權利。
提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。



商品評價