0916~0919_開學季語言展

【電子書】新手村逃脫!初心者的 Python 機器學習攻略(iT邦幫忙鐵人賽系列書)

達洋貓《櫻花樹》一卡通

達洋貓《櫻花樹》一卡通

【開學大作戰】一卡通全面限時9折起

  • 380

活動訊息

用閱讀開啟視野,讓書成為照亮你人生的光
【金石堂選書】本月推薦您這些好書👉 快來看看

內容簡介

使用 Python 程式語言實作機器學習基礎理論的入門書,均衡涵蓋程式套件應用與理論推導,透過本書讀者能夠按圖索驥,走出機器學習新手村,成功一轉!

 

❶ 先使用套件現成類別與函式

❷ 再認識演算方法理論與推導

❸ 最後使用自行定義類別重現

 

本書內容改編自第 8 屆 iT 邦幫忙鐵人賽,Big Data 組冠軍網路系列文章──《 R 語言使用者的 Python 學習筆記》,從系列文章中後段開始改寫,省略了原本 Python 基礎語法、網頁資料擷取(俗稱爬蟲)與 Pandas 的章節,著重在以 NumPy、Matplotlib、Scikit-Learn 入門機器學習基礎理論的部分,並與作者的實體課程 (台大工商管理學系、台大資工系統訓練班與中華電信學院等資料科學課程) 教材整合編修而成。

 

三大重點

先使用套件現成類別與函式

☛NumPy 的 N 維陣列操作與運算

☛物件導向風格的 Matplotlib 視覺化

☛Scikit-Learn 的五個核心理念

☛Keras 的模型建立步驟
 

再認識演算方法理論與推導

☛均方誤差函式

☛梯度遞減演算方法

☛交叉熵函式

☛前向傳播與反向傳播
 

最後使用自行定義類別重現

☛正規方程類別

☛梯度遞減類別與 AdaGrad 類別

☛羅吉斯迴歸類別

☛深度學習類別

目錄

CHAPTER 1 關於視覺化與機器學習
1.1 一個資料科學專案 
1.2 何謂視覺化 
1.3 為何視覺化
1.4 何謂機器學習
1.5 pyvizml 模組
1.6 為何機器學習
1.7 延伸閱讀

CHAPTER 2 數列運算
2.1 關於 NumPy
2.2 為何 NumPy
2.3 如何建立 ndarray
2.4 常用的 ndarray 屬性
2.5 純量、向量、矩陣與張量
2.6 ndarray 的索引
2.7 ndarray 的切割
2.8 ndarray 特別的索引
2.9 重塑外觀
2.10 複製陣列
2.11 合併陣列
2.12 通用函式
2.13 聚合函式
2.14 延伸閱讀

CHAPTER 3 資料探索
3.1 關於 Matplotlib
3.2 為何 Matplotlib
3.3 使用 Matplotlib 的兩種方式
3.4 輸出 Matplotlib 作圖
3.5 常見的探索性資料分析
3.6 觀察數值資料相關性的需求
3.7 觀察類別資料排序的需求
3.8 觀察數值資料分布的需求
3.9 觀察數學函式外觀的需求
3.10 觀察區域海拔高度的需求
3.11 顯示二維數值陣列的需求
3.12 如何為圖形增加元素
3.13 如何在圖形中加入中文字
3.14 如何繪製子圖
3.15 延伸閱讀

CHAPTER 4 機器學習入門
4.1 關於 Scikit-Learn
4.2 為何 Scikit-Learn
4.3 五個核心理念
4.4 機器學習的資料表達
4.5 Scikit-Learn 的支援場景
4.6 關於訓練、驗證與測試資料
4.7 延伸閱讀

CHAPTER 5 數值預測的任務
5.1 關於數值預測的任務
5.2 以 Scikit-Learn 預測器完成數值預測任務
5.3 正規方程 Normal Equation
5.4 自訂正規方程類別 NormalEquation
5.5 計算複雜性
5.6 梯度遞減 Gradient Descent
5.7 自訂梯度遞減類別 GradientDescent
5.8 標準化與進階的梯度遞減
5.9 延伸閱讀

CHAPTER 6 類別預測的任務
6.1 關於類別預測的任務
6.2 以 Scikit-Learn 預測器完成類別預測任務
6.3 羅吉斯迴歸
6.4 自訂羅吉斯迴歸類別 LogitReg
6.5 二元分類延伸至多元分類:One versus rest
6.6 二元分類延伸至多元分類:Softmax 函式
6.7 兩種表示類別向量的形式
6.8 延伸閱讀

CHAPTER 7 表現的評估
7.1 如何評估機器學習演算方法
7.2 評估數值預測任務的表現
7.3 評估類別預測任務的表現
7.4 自訂計算評估指標的類別 ClfMetrics
7.5 誤差的來源
7.6 減少訓練誤差
7.7 減少訓練誤差與測試誤差的間距
7.8 延伸閱讀

CHAPTER 8 深度學習入門
8.1 什麼是深度學習
8.2 為何深度學習
8.3 什麼是 Keras
8.4 為何 Keras
8.5 撰寫 Keras 的步驟
8.6 前向傳播
8.7 反向傳播
8.8 自訂深度學習類別 DeepLearning
8.9 MNIST 資料與時裝 MNIST 資料
8.10 延伸閱讀
APPENDIX A pyvizml.py

詳細資料

詳細資料

    • 語言
    • 中文繁體
    • 裝訂
    • ISBN
    • 9789864345076
    • 分級
    • 普通級
    • 頁數
    • 256
    • 商品規格
    • 23*17
    • 出版地
    • 台灣
    • 適讀年齡
    • 全齡適讀
    • 注音
    • 級別

商品評價

訂購/退換貨須知

加入金石堂 LINE 官方帳號『完成綁定』,隨時掌握出貨動態:

加入金石堂LINE官方帳號『完成綁定』,隨時掌握出貨動態
金石堂LINE官方帳號綁定教學

提醒您!!
金石堂及銀行均不會請您操作ATM! 如接獲電話要求您前往ATM提款機,請不要聽從指示,以免受騙上當!

購買須知:

使用金石堂電子書服務即為同意金石堂電子書服務條款

電子書分為「金石堂(線上閱讀+APP)」及「Readmoo(兌換碼)」兩種:

金石堂 電子書
  • 將儲存於會員中心→電子書服務「我的e書櫃」,點選線上閱讀直接開啟閱讀。
    1. 線上閱讀:
      建議使用Chrome、Microsoft Edge 有較佳的線上瀏覽效果, iOS 14.2 或以上版本,Android 6.0 以上版本,建議裝置有6GB以上的記憶體,至少有 30 MB以上的容量。
    2. 離線閱讀:
      APP下載:iOS Android
      安裝電子書APP後,請依照提示登入「會員中心」→「我的E書櫃」→「電子書APP通行碼/載具管理」,取得通行碼再登入下載您所購買的電子書。完成下載後,點選任一書籍即可開始離線閱讀。
Readmoo 電子書
  • 請至會員中心→電子書服務「我的e書櫃」領取複製『兌換碼』至電子書服務商Readmoo進行兌換。

退換貨須知:

  • 因版權保護,您在金石堂所購買的電子書僅能以金石堂專屬的閱讀軟體開啟閱讀,無法以其他閱讀器或直接下載檔案。
  • 依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等),不受「網購服務需提供七日鑑賞期」的限制。為維護您的權益,建議您先使用「試閱」功能後再付款購買。
※ 本品無額外回饋
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing