好書試閱

衡量的定義
衡量:根據一項或多項觀察,以數量表達的方式降低不確定性。

就所有實用上的目的而言,科學家將衡量當作是數量上降低不確定性的觀察。只要降低不確定性,不必然要消除不確定,對衡量來說這就足夠了。即使科學家沒有精確說明這項定義,他們的作法已清楚說明了這項定義。微量的誤差無法避免,但仍改良了先備知識(prior knowledge)。這個事實對如何進行實驗、調查,以及其他科學衡量而言是最重要的。
這種「降低不確定性」的觀點,對企業而言是非常重要的。在不確定的狀態下要做的重大決策──例如是否核可大型IT計畫,或是新產品開發案──都能因為降低不確性,而做得更好,其所帶來的價值,可能高達數百萬美元。
因此,一項衡量根本不必消除不確定性。衡量帶來的微幅不確定性降低,其價值可能遠大於衡量的成本。但還有另一個關鍵的衡量觀念,會讓大多數人驚訝的是:衡量不一定是我們通常所認為的數量化的衡量。請注意,我提出的衡量定義所說的是,一項衡量是「以定量的方式表達」(quantitatively expressed)。不確定性,至少要數量化,但是觀察的主體可能不是定量的量(quantity)──可以完全是屬質的(qualitative),例如是否屬於某一個集合。比方說,我們可以「衡量」一項專利能否取得判決,或是一個合併案是否會成功,而這些仍能符合我們對於衡量的精確定義。但是我們對於那些觀察的不確定性,必須以定量的方式表達(例如,有85%的機會我們會贏得專利訴訟;我們有93%的把握,在合併後可以改善我們的公眾形象)。

衡量的方法

有些事物看似無法衡量,只是因為當事人不知道解決問題的基本衡量方法,例如各種抽樣程序或各類對照控制實驗。一項反對衡量常見的理由是,問題很獨特,過去從來沒有被衡量過,而且沒有任何方法能顯示出它的數值。這樣的反對,總是透露出那個人在科學上的無知,而不是實證作法有根本上的限制。
振奮人心的是,我們知道一些獲得驗證的衡量方法,可以用在各類主題上,幫助衡量你最初認為無法衡量的事物。此處有一些例子:

1.以非常小的隨機樣本數做衡量:從小樣本數的潛在客戶、員工等,你可以得知一些事情,尤其眼前狀況存在很大不確定性的時候。
2.在無法完全看遍整個母體的情況下做衡量:要衡量海洋中某種魚類的數量、雨林中植物的物種數量、新產品生產誤差的數量,或是未被偵測到的、試圖侵入貴公司資訊系統的非法攻擊次數等等,都有聰明且簡單的作法可以衡量。
3.在涉及許多其他變數,甚至是未知的變數的情況下做衡量:我們可以測定新「品質計畫」是否是產品銷售量增加的原因,相對於總體經濟好轉、競爭者犯了錯誤、新的訂價政策等因素。
4.衡量罕見事件的風險:過去沒有發射過的火箭,發生發射失敗的機會,或是發生另一次911攻擊的機會、紐奧良再一次潰堤的機會、再一次重大金融危機的發生機會等等,全都可以透過觀察和推論,得到有價值的訊息。
5.衡量主觀偏好及價值:我們可以衡量藝術、悠閒時光、或降低死亡風險的價值,經由評估人們真正支付在這些事物上的金額來做衡量。
 
 這些衡量的方法,大部分只是變化自一些基本的作法,利用不同的抽樣、對照控制實驗,有時候是選擇把焦點放在不同的問題類型。像這些觀察的基本方法,在企業的某些決策過程中,通常都付之闕如,也許是因為這類科學程序常被認為複雜又太公式化。在很短的時限、有限的成本之下,如果必須做衡量的話,通常你不會考慮採用這樣的方法。然而它們是可以採行的。
這裡提供一個非常簡單的例子,任何人都可以用一個很容易計算的統計不確定性來做快速衡量。假設你在考慮公司是否要多增加一些「遠距辦公」(telecommuting)的機會。在考量這類提案時有個相關的因素是,每名員工平均每天花在通勤上的時間為何。你可以針對這個題目進行一項正式的全辦公室普查,但這可能很耗時又昂貴。假設,你不用普查的方式,而只是隨機找了五名員工(本書稍後會討論一些關於「隨機」構成條件的議題)。你閉上雙眼,從員工名錄中挑出名字打電話給這些人,並問他們通常花多少時間通勤。假設你得到的數值是30、60、 45、80、60分鐘。這五個樣本中最低和最高的數值為30和80。則全部員工的母體中位數(median),有93.75%的機會,會落在這兩個數字之間。我稱此為「五的規則」(Rule of Five)。五的規則很簡單、有用,而且可以證明它在很多問題上都是統計上有效的。雖然樣本數很小,範圍可能很大,但是若能比你先前的範圍大幅縮小,那它作為一項衡量就很有價值了。

五的規則
任何從母體中隨機抽取的五個樣本,母體的中位數有93.75%的機會,會落在這五個樣本中最大和最小數值之間。

根據只有五個樣本的隨機抽樣,要對任何事物有93.75%的確定,看起來似乎不可能,但是它的確行得通。要了解為什麼這個作法行得通,請注意五的規則估算的是母體的中位數,這一點是很重要的。母體的一半會高於中位數,另一半則低於它。如果我們隨機選取五個數值,全都高於或低於中位數,則中位數就會落在我們的範圍之外。但這樣的機會究竟會有多少呢?
隨機選取的一個數值,高於中位數的機會,依照定義而言是50%──和投擲一枚硬幣結果是「人頭」的機會相同。隨機選取五個數值,剛好全都高於中位數,就像投擲硬幣連續五次都是人頭一樣。隨機投擲硬幣得到連續五次人頭的機會為32分之1,也就是3.125%;連續得到五次背面的機會也是一樣。因此,不是全都人頭也不是全都背面的機會是100%-3.125%×2,也就是93.75%。於是,五個樣本中至少有一個高於中位數、同時至少有一個低於中位數的機會就是93.75%(如果你要保守一點,也可說是93%或甚至90%)。有些讀者可能會記得,統計課會有一堂課討論非常小樣本的統計。那些作法比起五的規則要來得複雜多了,但是,答案真的沒有好太多,理由在本書稍後我會詳細討論。
我們可以使用一些簡單的方法修正特定型態的偏誤。也許最近在進行的建設工程,暫時增加了每個人所估計的「平均通勤時間」。或者通勤時間最長的人比較可能請病假,或有其他原因,讓你抽樣時找不到他。然而,即使有這些大家知道的缺點,五的規則仍然是很便利的。
金石堂門市 全家便利商店 ok便利商店 萊爾富便利商店 7-11便利商店
World wide
活動ing