AI 時代的管理數學:使用 R 語言實作
活動訊息
內容簡介
如果你主要關注統計分析、數據可視化、線性代數、初等微積分,
並希望較快上手,「R語言」會是較佳的選擇!
本書獨特之處在於以直觀且實用的方式,清楚介紹人工智慧及機器學習領域中常用的管理數學工具。透過R語言的實作,讀者得以深入理解並實際應用於不同實務情境。
書中的實例不侷限於理論探討,更著重實際應用,貼近日常生活,喚起讀者對數學的共鳴與學習熱情。舉例而言,透過應用貝氏定理,探討運動員實際服用興奮劑的真相,以及判斷過濾垃圾郵件的情境。同時,透過極佳化方法的應用,協助航空公司訂定最適價格和最大利潤路線圖等案例,使得理論更具實用性。
除此之外,本書擴大管理數學的範疇:從管理數學傳統上僅處理統計、線性代數的刻板印象,將此核心概念延伸至線性轉換、特徵值與特徵向量等進階議題,並且更進一步涵蓋一般書籍較少觸及的「極佳化方法」,包括微分、極值、偏微分以及拉氏乘數等內容,於實用範例中為機器學習(Machine learning)的數學應用奠定基礎。
線性規劃的討論更是引領讀者回溯至二戰時期,線性規劃應用於確定空中力量和雷達(radar)的最佳使用,具有時代非凡之意義。同時探討在各種混和限制條件下,欲達目標極大、極小化,使用線性代數中構築人工基底手法,自標準的極大化問題做為起點,經二階段法、對偶問題法、對偶單形法,深入解說 R 軟體 lpSolveAPI 套件背後的數學脈絡或故事。
本書精彩內容 ——
線性代數|線性函數|線性方程組|矩陣|向量空間|線性轉換|
極佳化方法|拉氏函數|機率與統計|單利.複利|線性規劃|馬可夫鏈|預測|
本書特色
☑ 以 R 軟體的程式語言與過程,深入解說並印證數學定義、定理
☑ 透過 R 軟體的印證,經驗的移轉,形塑跨電腦語言的整體處理思維
☑ 促成 R 軟體成為數學符號以外的第二語言,加速數學學習效率
☑ 將人工智慧及機器學習常用之數學思維,應用於資料分析及解決管理問題
專業推薦
本書可以說是兩位學、產業界菁英以其多年的學經歷共同澆鑄的里程碑。內容以線性代數開啟矩陣,揭開「資料呈現的語言:矩陣」運用的神秘面紗(向量空間與轉換);其他如微積分與拉氏函數在決策上扮演了重要的角色(波音收購麥道背後的精細計算)、機率統計的應用如何決定快篩的時機(避免偽陽、偽陰)、線性規劃包括各種極大化及極小化情境的應對技巧(單形法),和管理者最關注的前瞻預測(時間趨勢、週期變化與雜訊過濾)等等,都有待讀者諸君細細品嚐。—— 范宏書 博士|輔仁大學商學研究所長
目錄
CHAPTER 01 截彎取直:線性函數與線性方程組
1-1 直線的交點(Intersection of Straight Line)
1-2 最小平方法(The Method of Least Squares)
CHAPTER 02 資料呈現的語言:矩陣
2-1 矩陣定義與基本運算
2-2 矩陣應用於密碼學(Cryptography)
2-3 矩陣應用於經濟學:Leontief模式
2-4 矩陣應用於最小平方法
CHAPTER 03 Google 搜尋是如何運作:向量空間與線性轉換
3-1 向量與向量空間
3-2 線性獨立與基底
3-3 線性轉換(Linear transformation)
3-4 特徵值與特徵向量(Eigenvalues and eigenvectors)
CHAPTER 04 資源有限條件的極值問題:極佳化方法
4-1 微分及其應用
4-2 微分及全微分
4-3 函數的極值
4-4 拉氏乘數(Lagrange multiplier)
4-5 極佳化方法的應用
CHAPTER 05 COVID-19 陽性、偽陽性議題:機率與統計
5-1 敘述性統計
5-2 機率
5-3 隨機變數、常態分配及抽樣分配
CHAPTER 06 時間的價值:單利、複利的年金;分期償還及償債基金
6-1 單利、複利
6-2 單利、複利的進階應用
6-3 年金(Annuity)
CHAPTER 07 最少的資源與滿足最佳效益:線性規劃
7-1 極大化問題(maximization problem)
7-2 極小化問題(minimization problem)
CHAPTER 08 AI 中的隨機與穩態過程:馬可夫鏈
CHAPTER 09 AI 的前沿應用:預測
9-1 定性的預測方法
9-2 時間序列預測方法
9-3 關聯性預測 - 簡單迴歸模式
9-4 關聯性預測 - 複迴歸模式
9-5 判定係數與相關係數
9-6 顯著性檢定
9-7 預測準確性
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價