世界第一簡單物理數學
活動訊息
想找書的時候,特別想偷看網友的書櫃... 原來大家都在看這本 ↓↓↓
內容簡介
在歷史的長河中,物理學和數學總是同步發展著。
然而,到高中為止,「物理」和「數學」都被歸類為不同的科目,少有機會能體會到它們的「同步發展」。
本書的預設讀者是像作者一樣「不太擅長數學,卻想要學習物理學」的學生,透過比高中程度再稍難的數學,深入淺出地連結物理學,體會物理學與數學的息息相關,並盡可能地收錄大量的物理學例題,輔以漫畫特有的生動圖繪,幫助讀者能夠在腦海中不斷湧現用數學所描述的物理學世界。
也請來清華大學物理系林秀豪教授專門審訂,給予大家更專業的知識!
基礎數學知識對於在大學學習的物理學是必不可少的。
然而,在數學課上並不經常涉及物理學的應用,而且在大多數情況下,在物理課上也沒有多少時間來解釋數學。
本書針對高中和大學一、二年級所學的數學,如線性代數、微分和積分微積分、微分方程、複數等,通過漫畫和插圖,用視覺幫助學生獲得對公式和計算的清晰印象。
此外,還以實例的形式解釋了數學在物理學中的應用,可以從中理解數學和物理學之間的聯繫。
目錄
序章 家庭教師的我反而變成她的學生!?
第1章 什麼是物理數學?
第2章 線性代數
第3章 單變數函數的微積分
第4章 多變數函數的微積分
第5章 向量分析
第6章 複數
目錄
目錄
序言
序幕 家庭教師的我變成她的學生!?
第 1 章 什麼是物理數學?
物理與數學息息相關
高中物理與大學物理的差異
線性代數、向量與矩陣
微積分
向量分析
複數
既有趣又美麗的物理世界
第 2 章 線性代數
1什麼是純量、向量、矩陣、張量?
純量與向量
向量的成分表示
向量的大小、單位向量、基向量
什麼是張量?
矩陣的概念
2向量運算、矩陣運算
理解向量、矩陣的運算方法
什麼是反矩陣(逆矩陣)?
3使用矩陣聰明求解聯立一次方程式
簡化聯立方程式
彈簧與重錘的問題
4使用矩陣做轉換
轉換後更容易理解
使用矩陣轉換的方法
什麼是映射?
5由本徵值、本徵向量瞭解矩陣的真面目
瞭解本徵值、本徵向量的意義
求反矩陣就是求解方程式
以矩陣檢查有沒有反矩陣
第 3 章 單變數函數的微積分
1從開車兜風感受微積分
回顧微積分
微分與導函數
導函數的數學意義
注意因次
微分的性質與導函數的求法
2 再做微分
嘗試微分兩次
「位置、速度、加速度」的微分關係
3 泰勒展開
簡化複雜的函數
透過導函數以直線表示曲線
均值定理
泰勒展開
泰勒展開的式子形式
馬克勞林展開的式子形式
從喜歡的地方剪斷來逼近!
萬有引力的位能問題
4做積分
回顧積分
積分是相加細長的長方形
什麼是不定積分
物理量的因次與微積分
極座標的積分
求極座標的積分值
積分的應用
第 4 章 多變數函數的微積分
1多變數函數的「微分」
以多變數函數表示多方向的運動情況
單變數函數與多變數函數的差異
多變數函數偏微分後變成偏導函數
什麼是全微分?
偏微分的運算特徵
2使用偏微分表示波
多變數函數的波
固定時間的波變化
固定位置的波變化
對波動函數做偏微分
3圓柱座標、球座標的微分
圓柱座標的偏微分
球座標的偏微分
4多變數函數的「積分」
面積分、線積分、體積分
面積分(雙重變數的積分)的思維
面積分(雙重變數函數的積分)的運算
極座標、圓柱座標、球座標的積分
5什麼是微分方程式?
以微分方程式求函數的解
微分方程式的用語
微分方程式的解法
輻射性同位素的原子衰變
重錘、彈簧與黏性阻尼器的問題
第 5 章 向量分析
1梯度(grad)散度(div)旋度(curl)
什麼是向量分析
什麼是向量場?
向量的內積、外積
什麼是向量算符?
grad(梯度)運算能夠瞭解什麼?
div(散度)運算能夠瞭解什麼?
curl(旋度)運算能夠瞭解什麼?
2使用∇(Nabla)算符來簡化
超級便利的向量算符∇(Nabla)
3高斯定理
兩個積分定理
高斯定理就是散度(div)定理
史托克斯定理
史托克斯定理就是旋度(curl)定理
由史托克斯定理推得安培定理
某圓柱周圍的磁場結構
第 6 章 複數
1什麼是複數?
關於複數
在複數平面表示複數
複數的極式
歐拉公式
不停旋轉複數平面
導入複數來簡單處理波的問題
2以複數表示的簡諧振動、交流電路
簡諧運動與複數
交流電路的複數
尾聲
更進一步學習
索引
序/導讀
目錄
序言
序幕 家庭教師的我變成她的學生!?
第 1 章 什麼是物理數學?
物理與數學息息相關
高中物理與大學物理的差異
線性代數、向量與矩陣
微積分
向量分析
複數
既有趣又美麗的物理世界
第 2 章 線性代數
1什麼是純量、向量、矩陣、張量?
純量與向量
向量的成分表示
向量的大小、單位向量、基向量
什麼是張量?
矩陣的概念
2向量運算、矩陣運算
理解向量、矩陣的運算方法
什麼是反矩陣(逆矩陣)?
3使用矩陣聰明求解聯立一次方程式
簡化聯立方程式
彈簧與重錘的問題
4使用矩陣做轉換
轉換後更容易理解
使用矩陣轉換的方法
什麼是映射?
5由本徵值、本徵向量瞭解矩陣的真面目
瞭解本徵值、本徵向量的意義
求反矩陣就是求解方程式
以矩陣檢查有沒有反矩陣
第 3 章 單變數函數的微積分
1從開車兜風感受微積分
回顧微積分
微分與導函數
導函數的數學意義
注意因次
微分的性質與導函數的求法
2 再做微分
嘗試微分兩次
「位置、速度、加速度」的微分關係
3 泰勒展開
簡化複雜的函數
透過導函數以直線表示曲線
均值定理
泰勒展開
泰勒展開的式子形式
馬克勞林展開的式子形式
從喜歡的地方剪斷來逼近!
萬有引力的位能問題
4做積分
回顧積分
積分是相加細長的長方形
什麼是不定積分
物理量的因次與微積分
極座標的積分
求極座標的積分值
積分的應用
第 4 章 多變數函數的微積分
1多變數函數的「微分」
以多變數函數表示多方向的運動情況
單變數函數與多變數函數的差異
多變數函數偏微分後變成偏導函數
什麼是全微分?
偏微分的運算特徵
2使用偏微分表示波
多變數函數的波
固定時間的波變化
固定位置的波變化
對波動函數做偏微分
3圓柱座標、球座標的微分
圓柱座標的偏微分
球座標的偏微分
4多變數函數的「積分」
面積分、線積分、體積分
面積分(雙重變數的積分)的思維
面積分(雙重變數函數的積分)的運算
極座標、圓柱座標、球座標的積分
5什麼是微分方程式?
以微分方程式求函數的解
微分方程式的用語
微分方程式的解法
輻射性同位素的原子衰變
重錘、彈簧與黏性阻尼器的問題
第 5 章 向量分析
1梯度(grad)散度(div)旋度(curl)
什麼是向量分析
什麼是向量場?
向量的內積、外積
什麼是向量算符?
grad(梯度)運算能夠瞭解什麼?
div(散度)運算能夠瞭解什麼?
curl(旋度)運算能夠瞭解什麼?
2使用∇(Nabla)算符來簡化
超級便利的向量算符∇(Nabla)
3高斯定理
兩個積分定理
高斯定理就是散度(div)定理
史托克斯定理
史托克斯定理就是旋度(curl)定理
由史托克斯定理推得安培定理
某圓柱周圍的磁場結構
第 6 章 複數
1什麼是複數?
關於複數
在複數平面表示複數
複數的極式
歐拉公式
不停旋轉複數平面
導入複數來簡單處理波的問題
2以複數表示的簡諧振動、交流電路
簡諧運動與複數
交流電路的複數
尾聲
更進一步學習
索引
配送方式
-
台灣
- 國內宅配:本島、離島
-
到店取貨:
不限金額免運費
-
海外
- 國際快遞:全球
-
港澳店取:
相關商品
世界第一簡單CPU
世界第一簡單物理數學
世界第一簡單機器學習
世界第一簡單專案管理
世界第一簡單電力設備
世界第一簡單量子力學
世界第一簡單線性代數
世界第一簡單基礎生理學
世界第一簡單密碼學 修訂版
世界第一簡單統計學【修訂版】
世界第一簡單馬達
世界第一簡單社會學
世界第一簡單電子電路【修訂版】
世界第一簡單傅立葉分析
世界第一簡單免疫學
世界第一簡單生物化學
世界第一簡單虛數.複數
世界第一簡單分子生物學
世界第一簡單電力系統
世界第一簡單程序控制
世界第一簡單電路學
世界第一簡單有機化學
世界第一簡單數位電路
世界第一簡單藥理學
世界第一簡單流體力學
世界第一簡單電磁學
世界第一簡單無人機
世界第一簡單營養學
世界第一簡單藥物動力學
世界第一簡單土壤力學
世界第一簡單電學原理
世界第一簡單統計學(迴歸分析篇)
世界第一簡單物理學【力學篇】(修訂版)
世界第一簡單統計學(因素分析篇)
世界第一簡單 英文論文寫作
世界第一簡單財務工程
訂購/退換貨須知
退換貨須知:
**提醒您,鑑賞期不等於試用期,退回商品須為全新狀態**
-
依據「消費者保護法」第19條及行政院消費者保護處公告之「通訊交易解除權合理例外情事適用準則」,以下商品購買後,除商品本身有瑕疵外,將不提供7天的猶豫期:
- 易於腐敗、保存期限較短或解約時即將逾期。(如:生鮮食品)
- 依消費者要求所為之客製化給付。(客製化商品)
- 報紙、期刊或雜誌。(含MOOK、外文雜誌)
- 經消費者拆封之影音商品或電腦軟體。
- 非以有形媒介提供之數位內容或一經提供即為完成之線上服務,經消費者事先同意始提供。(如:電子書、電子雜誌、下載版軟體、虛擬商品…等)
- 已拆封之個人衛生用品。(如:內衣褲、刮鬍刀、除毛刀…等)
- 若非上列種類商品,均享有到貨7天的猶豫期(含例假日)。
- 辦理退換貨時,商品(組合商品恕無法接受單獨退貨)必須是您收到商品時的原始狀態(包含商品本體、配件、贈品、保證書、所有附隨資料文件及原廠內外包裝…等),請勿直接使用原廠包裝寄送,或於原廠包裝上黏貼紙張或書寫文字。
- 退回商品若無法回復原狀,將請您負擔回復原狀所需費用,嚴重時將影響您的退貨權益。
商品評價