【電子書】AI×Excel×Tableau資料分析語法指南
【本書特色】 ✪收錄超過80個好用的數據分析AI語法 ✪生成式AI輔助分析的心法分享 ✪實作Excel與Tableau搭配的豐富案例 ✪瞭解使用者與生成式AI的互動邏輯 生成式AI進入高速發展的階段,各行各業紛紛與AI搭起合作橋梁,讓工作流程有了更多的可能性。本書以生成式AI如何輔助數據分析任務為核心架構,除了基礎與進階提問語法的練習之外,也分享了生成式AI與Excel/Tableau兩大分析工具的協作練習,內容包含AI輔助資料格式整理、Excel函數撰寫、生成VBA自動化分析語法練習等。讀者可透過本書的範例語法,親手練習高效率的學習與產出流程,是數據分析與AI生成技術愛好者的輔助指南。 AI × Excel × Tableau高效分析,實踐各行各業的數據分析應用豐富圖解 × 解說詳細 × 效率即戰力,打造工作超效率技術的實務應用好幫手【內容簡介】生成式AI進入高速發展的階段,各行各業紛紛與AI搭起合作橋梁,讓工作流程有了更多的可能性。本書以生成式AI如何輔助數據分析任務為核心架構,除了基礎與進階提問語法的練習之外,也分享了生成式AI與Excel/Tableau兩大分析工具的協作練習,內容包含AI輔助資料格式整理、Excel函數撰寫、生成VBA自動化分析語法練習等。讀者可透過本書的範例語法,親手練習高效率的學習與產出流程,是數據分析與AI生成技術愛好者的輔助指南。【精采內容】✪AI輔助資料分析的好用語法✪AI輔助Excel/Tableau資料分析✪AI如何執行數據分析✪AI輔助分析公開資料應用實戰✪AI幫你建立自動化分析✪AI幫你快速整理資料✪AI輔助高效生成數據分析報告【目標讀者】✪想了解AIGC如何輔助數據分析流程的人✪日常工作需要透過Excel撰寫函式進行分析的人✪希望透過AI輔助操作Tableau進階應用的人
【電子書】dbt 與 Analytics Engineering 實戰手冊:從零打造現代資料分析架構及專業職涯(iThome鐵人賽系列書)
♛ 第一本 dbt 繁體中文書 ♛資料分析師與工程師必讀的技術及職涯實戰指南本書改編自第 15 屆 iThome 鐵人賽 AI & Data 組優選系列文章《被 dbt 帶入門的數據工作體驗 30 想》及其團隊夥伴作品。四位作者由不同身份和視角出發,分享如何透過 dbt 實踐 Analytics Engineering(分析工程)。dbt 是一個以 SQL 為基底的開源資料轉換工具,採用軟體工程原則,如版本控制、測試、模組化,讓資料轉換更可靠且高效。本書將帶你動手建立 dbt 專案,親自體驗其優勢。Analytics Engineering 則是隨著資料產業演化而發展出的新興領域,介於資料分析和資料工程之間,且和兩者的部分任務重疊。除技術外,書中也會討論資料文化、如何打造資料團隊,以及資料專業的職涯規劃和發展。無論新手或老手,本書都是能為你提供獨到見解的實用指南。重點摘要✦ dbt 由淺入深dbt Cloud 及 dbt Core 實作應用✦ 動手操作附範例、語法、操作截圖✦ 資料分析必備資料品質及建模最佳實踐✦ 打造資料文化資料團隊現代化經典案例目標讀者任何工作中使用資料的人。包含:◆ 參與資料專案的成員,不論你在資料部門,或是支援資料專案的軟體部門。你負責資料轉換成資訊的過程,想嘗試新工具,解決原本資料流程遇到的痛點。◆ 在工作上經常使用資料的角色,例如:行銷、Sales、PM、財務、營運人員等。你對資料、報表有好奇心、想知道資料轉換成資訊的過程,並且喜歡動手操作。專業推薦透過真實案例與深入見解,引導你有效導入 dbt,營造資料驅動環境。無論你是資料處理老手或新手,本書皆提供所需知識與工具,幫助組織進入資料引導決策的未來。──── 高嘉良(CL Kao)|Recce, CEO這本書涵蓋了打造優秀數據團隊所需的全方位知識,不僅適合技術人員閱讀,也非常適合產品經理、商業分析師等角色參考。──── Richard Lee|TNL Mediagene 技術長因緣際會被我推坑的 Taipei dbt Meetup 熱血志工群,融合真實經驗,以案例故事呈現 Data 如何貫穿企業,讓你認識 dbt 並一窺 Data Team 的重要定位。──── 陳正瑋(艦長)|DevOps Taiwan Community 志工╱前 Organizer
【電子書】商業大數據的視覺化設計與Power BI實作應用
世新大學校長 陳清河 / 國立中央大學副校長 許秉瑜 ~誠摯推薦~ 【中華企業資源規劃學會 視覺化軟體應用師認證教材指定用書】 現在是一個大數據無處不在的年代,無論是企業或個人,建立一個快速解讀資料的能力,顯得相當實用且重要。其中,資料視覺化就是一個備受關注且重視的面向。用視覺化的方式來呈現資料的內容,能夠讓決策者更容易理解,執行者能更輕易的利用圖表與他人進行溝通。因此,資料視覺化的應用已經是許多企業相當看重的大數據分析技術之一。 然而,圖表的類別龐雜,如何選擇適切的圖表來忠實呈現資料,卻是操作者的困擾。因此,本書將資料視覺化的圖形予以整理及分類,藉由各章的說明、介紹、優劣比較與繪製建議,搭配企業個案資料來實際操作,減少讀者天馬行空的想像。 目前坊間資料視覺化的書籍多以軟體功能的介紹與操作為主,本書則是以不同應用類型的視覺化圖表為重點,搭配Power BI進行教學與解說,期待讓讀者在未來的應用上能夠更為得心應手。 最後,本書設計了一個整合的應用,利用企業的資料來進行實戰。透過資料視覺化的相關整合應用,去解讀企業營運時的狀態與樣貌,進而部署儀表板,提供即時決策參考。
【電子書】AI時代的資料科學:小白到數據專家的全面指南
這本趣味的指南在探索AI與資料科學領域的奇妙世界方面,具有以下特點,並獲得學界和業界的推薦:◆全面性:涵蓋從數據收集到機器學習模型構建的全過程,適合初學者和進階學習者。◆工具應用:重點介紹Python及其他主要工具的應用,這些工具是當今AI與資料科學必不可少的基礎。◆學界推薦:來自頂尖學術界專家的推薦,確保本書內容的學術性和專業性。◆業界推薦:專業資訊人士的推薦,證明本書在實際應用和職場技能需求的價值。◆實際案例和習題:提供豐富的實際案例和習題,有助於讀者從理論到實踐的無縫過渡,加深對知識的理解和應用能力。本書的特點使得這本指南不僅適合想要建立堅實基礎並深入研究AI與資料科學的新手,也適合希望在這些領域中追求更高專業水準的進階學習者。無論是學術研究還是商業應用,這本書都將成為讀者實現卓越的重要工具書。書籍推薦人:伽碩企業有限公司附設職業訓練中心執行長 郭明洽銘傳大學資訊科技與管理學程教授 尹邦嚴前仁寶電腦財務主管、法藍瓷行政主管、中強光電營運主管、國巨稽核主管 鄭穎臨日本東京農工大學 感染症未來疫学研究センター 特任助理教授 林立云王致遠 藥師國際商業機器股份有限公司 IBM 工程師 陳尚瑋優貝克股份有限公司資料工程師 吳俊毅
【電子書】一週學會Google Analytics 4:迅速打下分析基礎
「怎麼辦?對Google分析一竅不通,好焦慮!!」 趕快打開這個為期7天的學習計劃 每天都從有趣的漫畫開始 按部就班享受有趣且高效的GA4學習過程 「OMG!Google Analytics又改版,該不會要打掉重練吧......」 別擔心,我們會教你如何併用和遷移到GA4 曾經的努力會一直都在的^^ 「我不是不會,只是"稍微"忘記一點點」 需要回想哪個部分,就從哪個部分開始就好 32位撰稿人據自己的專長進行撰寫與發揮 精心安排的高效學習曲線 每章最後的QA練習讓你立刻加深印象 再也不怕轉頭就忘! Google Analytics或網站分析的專業書籍,但總感覺有點難度。為了應對這類困擾,本書從「基本中的基本」開始說明相關基礎知識,為讀者提供全方位協助。 本書規劃以一日一個主題的方式,一週就能讓您理解Google Analytics 4的運作和操作方法,並且掌握製作簡單報表的能力。 全面認識Google Analytics 4的工作原理、操作及分析方法 踏入網站分析實務之前, 先確實提升基礎能力吧!
【電子書】AI 時代的管理數學:使用 R 語言實作
如果你主要關注統計分析、數據可視化、線性代數、初等微積分, 並希望較快上手,「R語言」會是較佳的選擇! 本書獨特之處在於以直觀且實用的方式,清楚介紹人工智慧及機器學習領域中常用的管理數學工具。透過R語言的實作,讀者得以深入理解並實際應用於不同實務情境。 書中的實例不侷限於理論探討,更著重實際應用,貼近日常生活,喚起讀者對數學的共鳴與學習熱情。舉例而言,透過應用貝氏定理,探討運動員實際服用興奮劑的真相,以及判斷過濾垃圾郵件的情境。同時,透過極佳化方法的應用,協助航空公司訂定最適價格和最大利潤路線圖等案例,使得理論更具實用性。 除此之外,本書擴大管理數學的範疇:從管理數學傳統上僅處理統計、線性代數的刻板印象,將此核心概念延伸至線性轉換、特徵值與特徵向量等進階議題,並且更進一步涵蓋一般書籍較少觸及的「極佳化方法」,包括微分、極值、偏微分以及拉氏乘數等內容,於實用範例中為機器學習(Machine learning)的數學應用奠定基礎。 線性規劃的討論更是引領讀者回溯至二戰時期,線性規劃應用於確定空中力量和雷達(radar)的最佳使用,具有時代非凡之意義。同時探討在各種混和限制條件下,欲達目標極大、極小化,使用線性代數中構築人工基底手法,自標準的極大化問題做為起點,經二階段法、對偶問題法、對偶單形法,深入解說 R 軟體 lpSolveAPI 套件背後的數學脈絡或故事。 本書精彩內容 —— 線性代數|線性函數|線性方程組|矩陣|向量空間|線性轉換| 極佳化方法|拉氏函數|機率與統計|單利.複利|線性規劃|馬可夫鏈|預測| 本書特色 ☑ 以 R 軟體的程式語言與過程,深入解說並印證數學定義、定理 ☑ 透過 R 軟體的印證,經驗的移轉,形塑跨電腦語言的整體處理思維 ☑ 促成 R 軟體成為數學符號以外的第二語言,加速數學學習效率 ☑ 將人工智慧及機器學習常用之數學思維,應用於資料分析及解決管理問題 專業推薦 本書可以說是兩位學、產業界菁英以其多年的學經歷共同澆鑄的里程碑。內容以線性代數開啟矩陣,揭開「資料呈現的語言:矩陣」運用的神秘面紗(向量空間與轉換);其他如微積分與拉氏函數在決策上扮演了重要的角色(波音收購麥道背後的精細計算)、機率統計的應用如何決定快篩的時機(避免偽陽、偽陰)、線性規劃包括各種極大化及極小化情境的應對技巧(單形法),和管理者最關注的前瞻預測(時間趨勢、週期變化與雜訊過濾)等等,都有待讀者諸君細細品嚐。—— 范宏書 博士|輔仁大學商學研究所長 &
【電子書】輕鬆上手Power Automate入門與實作:數位轉型必備,打造高效率自動化流程控制的智慧辦公室
輕鬆掌握RPA!將辦公室的電子作業自動流程化! 無需撰寫程式碼、節省寶貴時間、減少人為錯誤 提升整體營運力、兼顧雲端版和桌面版、巧妙搭配ChatGPT 可以任意自訂流程將「Excel操作」、「SQL資料處理」、「Web應用」、「資料夾處理」等一連串作業輕鬆自動化! ✪可下載本書範例檔案✪ ★全盤掌握RPA:機器人流程自動化的基礎知識、優勢與應用案例。 ★Power Automate新手入門:基本操作與桌面流程的設置。 ★自動化範例實作導引:解析檔案管理及Excel工作表、活頁簿等操作。 ★結合SQL進行資料處理:Power Automate結合SQL指令進行資料處理。 ★生活應用自動化實例:操控應用程式、OCR文字及影像識別、PDF分類動作、LINE群發訊息。 ★網頁應用自動化實例:網路爬蟲、螢幕擷取、爬取表格資料、整合Web服務與ChatGPT API。 ★豐富學習資源:包含官方學習資源、社群論壇和YouTube頻道等。 本書為讀者提供了全面且實用的RPA(機器人流程自動化)與Power Automate學習指南。從基礎入門到進階應用,囊括了RPA的各個面向,並透過豐富的實作範例展示如何將這些技術應用於工作與日常生活。無論您是初學者還是尋求技能提升的專業人士,本書將為您提供所需的知識與技巧,幫助您在數位轉型的趨勢中站穩腳步。 每一頁、每一章,都是筆者精心規劃的結晶,希望透過這些文字與範例,不僅僅傳遞知識,更能激發您對自動化潛能的探索熱情。我們相信,技術的學習應該是輕鬆而愉悅的。本書精彩內容如下: ☛初探機器人流程自動化RPA ☛Power Automate的基礎 ☛第一次Power Automate自動化就上手 ☛桌面流程必懂的基礎知識 ☛檔案與資料夾自動化操作 ☛自動化操作Excel工作表 ☛自動化操作Excel活頁簿 ☛在Power Automate結合SQL進行資料處理 ☛生活應用自動化實例 ☛網頁應用自動化實例 ☛Power Automate雲端版的網路服務 ☛Power Automate學習資源 ☛ChatGPT聊天機器人與提示詞基本功 &
【電子書】文科生也可以輕鬆學會Web Scraper網路爬蟲與Power Automate X Excel大數據分析
不用動手寫程式,讓Web Scraper爬蟲 X Power Automate自動化工具幫你搞定! • 活用ChatGPT學習網路爬蟲、大數據分析和辦公室自動化 • ChatGPT學習SQL語法,建立高效率Excel資料處理術 Web Scraper是第一名Chrome擴充功能的爬蟲工具,不用撰寫程式碼,就可以建立CSS選擇器的網站爬取地圖從網站擷取資料,本書不只教你利用內建視覺化工具輕鬆爬取Web網站,更能夠使用ChatGPT學習HTML標籤+CSS選擇器,並了解各種網站巡覽結構。 Power Automate Desktop自動化工具,可以建立流程來執行一系列動作,輕鬆打造Windows應用程式和Excel自動化,來提高辦公室的工作效率,不只如此,再搭配書中使用ChatGPT學習SQL語法後,我們更可以整合Power Automate Desktop + SQL建立高效率的Excel資料處理。
【電子書】資料科學入門完全指南:資料分析的觀念.處理.實作
Chapter1 資料的概念:在最開始的地方,以一系列的案例讓讀者認識到資料的價值(1.1),並且學習透過資料的型態(1.2) 和尺度(1.3) 來認識資料。 Chapter2 Python 基礎:對於沒有程式基礎的讀者,會從 Python的介紹和環境安裝(2.1 ∼ 2.2) 開始,並且介紹一些基礎的程式語法與邏輯(2.3 ∼ 2.4),讓讀者可以快速上手Python。 Chapter3 基本數值資料處理:分別介紹在資料分析中最常用到的NumPy(3.1) 和Pandas(3.2),讓讀者可以對各種基本的資料進行處理與分析。 Chapter4 各式資料處理:除了基本的數值資料以外,更進一步介紹對於影像(4.1 ∼ 4.2)、音訊(4.3 ∼ 4.4)、文字(4.5 ∼ 4.6) 類型資料的觀念與實作。 Chapter5 資料前處理:專門介紹各種拿到資料後要先做的前處理方式,包含資料清理(5.1)、資料轉換(5.2),以及如何進行合適的資料視覺化(5.3)。 Chapter6 其他專題補充:針對本書無法展開的內容,透過一個個小實作專題進行補充介紹,包含探索式分析(6.1)、網頁爬蟲(6.2)、機器學習與模型評估(6.3)、ChatGPT API(6.4)、HuggingFace(6.5)、資料管線(6.6)、常見誤區(6.7) 等。 &
【電子書】大數據分析實務:RapidMiner之應用
本書使用免費下載的「RapidMiner」軟體,該軟體使用圖形化界面,不需編寫程式、操作簡易、功能強大且應用廣泛,適合初學與進階資料分析人士使用。 本書從基礎的資料取得、事前處理到模型的建置、評分、驗證與實例分析等,以實作方式,循序漸進的介紹大數據分析的操作步驟與流程。 全書提供30個案例,內容包含金融、製造、銷售、管理、醫療、休閒、氣象與情感分析文字探勘等諸多領域的應用實例,除了對現有結構與非結構式資料進行分析外,同時利用訓練模型預測未來,提升數據分析的實用價值。 本書除提供數據資料檔Data File外,亦附有各章節之程式/流程檔供讀者參考。
【電子書】實戰Tableau資料分析與視覺化分析
學會Tableau的操作方法以及思維,培養Tableau腦想要讓數位轉型成功的企業,就少不了Tableaui這類BI工具的應用。本書的目的是透過多道題目介紹「製作判斷所需的視覺化分析」的方法,以及「根據資料找出想知道的數值」的方法。讓我們一起學會Tableau的操作方法以及思維,培養Tableau大腦。 大量的技巧與提示本書大量介紹了各種技巧與Tips。由於能快速找到每個問題的解決方案,所以能快速地提升Tableau的技巧。本書除了介紹常見的技巧以及問題之外,也介紹一些需要Tableau獨特創意的內容,所以大家能透過本書學會更多分析技巧,全面提升Tableau的實力。 透過實際演練,了解Tableau的操作與邏輯要想熟悉Tableau,就必須多練習、多累積經驗。不斷地優先練習那些不容易記住的題目,藉此學會思考模式。大量練習之下,練習的品質也會跟著提升。建議大家不要只是瀏覽步驟,而是要實際動手演練。不斷地練習,總有一天會有所突破。只要能夠熟悉Tableau的操作,就能在短時間之內完成高品質的分析。但願有更多人能夠體驗使用Tableau進行視覺分析的趣味與益處。 本書的目標讀者○ 已經學會Tableau基本操作的人 ○ 想學會更多分析方法,推動業務的人 ○ 想透過實際的練習強化相關技巧的人
【電子書】GA4全方位攻略:掌握行銷科技與數據營運的成功指南
數據分析已經成為每個人的日常工作 視覺化的圖表讓我們更好地理解資訊的趨勢與分佈 本書以透過數據分析的架構與邏輯,幫助大家從 Universal Analytics 接軌到 Google Analytics 4;讓 Google Analytics 4 不僅僅只是網站/APP分析的工具,更能成為大家在日常工作中的好夥伴,讓 Google Analytics 4 與各式行銷工具擁有整合的能力,以達成自動化行銷的目的,並有效的提升大家的工作效率。 &
【電子書】圖解資料科學的工作原理
書中收錄給新手的重點詞彙集! 從分析方法到AI基本概念,圖解所有應該掌握的知識 圖表、數值種類、資料結果等,從基礎知識開始講解! 技術相關項目也會圖解說明,幫助初學者理解內容! 完整收錄統計學、AI基礎概念等相關知識! 網羅資訊社會中資料運用的問題點與課題! 資料科學家(Data Scientist)一詞已經使用超過10年,資料科學(Data Science)也時有耳聞。AI、物聯網愈發受到注目,IT工程人員紛紛投入資料分析的業務,運用他人的分析結果建構系統的事例亦不斷增加。相信不久的將來,在商務中使用資料會將變得理所當然。 稍微掌握基礎知識後,會想要嘗試複雜的分析手法。然而即便完成高階分析,如果接收者無法理解分析結果,就失去資料分析的意義了。 分析人員對分析手法會有深入了解,會仔細調查新的分析方法,但接收分析結果的受眾,不見得有充實的背景知識。 因此,如果最後的結論相同,建議使用比較簡單的方法。即便不用高階統計方法、機器學習,簡單的圖表也足以解釋背後的意義。有時也不需要使用數值資料準確地分析,簡單易懂的圖解就十分足夠。 然而接收分析結果的人不宜毫無背景知識,也不應因方便而要求使用簡單的分析方法。不僅是分析人員,接收分析結果的人的也需要學習。 本書將會圖解介紹各種分析方法的概要,但收錄的內容終究僅是概略的內容,想要進一步深入了解的話,建議搭配專業書籍來閱讀。不過,了解有哪些分析方法、掌握各種手法的特徵,其實本書就綽綽有餘了。在運用手邊的資料之前,一起學習資料的分析方法及處理時的注意事項吧。 -增井敏克
【電子書】Notion高效管理250招:筆記×資料庫×團隊協作,數位生活與工作最佳幫手
國內第一本最多應用技巧的Notion全面參考指南! 10大主題.全方位計劃管理 隨時都能開始的筆記與資料整理術 ■活用連結分頁資料庫以及筆記平台內容嵌入,Word、Excel文件整合。 ■涵蓋閱讀書單、費用計算、雲端書櫃、旅遊行程、專案時程、排程日曆...等應用實例。 ■電腦、手機跨平台(Windows / macOS、iOS / Android)適用,靈活操作即時更新。 【超值加贈】 全書範例與素材/達人都在用的28款實用範本 頁面設計優質圖示資源速查表/快速鍵隨身速查表 學習資源使用方式影音教學 解鎖Notion,讓你懂觀念、有想法、會應用 高效雲端管理,分享協作密技不藏私大公開 使用Notion時,你可能會遇到這些問題: ‧操作不熟悉 - 區塊類型選擇困難 ‧資料整理不拿手 – 整合散亂筆記有問題 ‧資料庫問題多 – 資料類型與關聯不清楚 由Notion最實用最基本的操作開始,一步驟一圖文全面詳解,不論是個人或團隊應用,輕鬆編排文字、圖片、音樂、影片、附件...等,以及資料庫到報告產出,跨平台應用,全方位高效掌握。 *熟悉Notion,扎實前端基礎 區塊自訂重組編排,頁面階層無限延伸,文字、資料庫、各式媒體格式,以及YouTube、Google Drive、Google Maps...等資料完全整併,善用Markdown語法及操作快速鍵,事半功倍、提升效率。 *結合生活與工作,完全實務應用 設計、教育、閱讀和寫作、銷售量、健康保健、人力資源...數十種不同情境範本,完全掌握工作效率及大小活動流程,跨平台、系統通用,用電腦、行動裝置隨手記事,輕鬆成為雲端工作達人。 *高質感素材與區塊樣式美化筆記,專業呈現 不僅要求作品專業完美,也希望工具平台介面簡單有設計感?Notion是一款介面簡潔的軟體,有設計感,靈活、流暢的操作加上Block編輯模式,大量免費封面圖片、圖示、Unsplash圖庫,輕鬆設計出不同用途的專業內容。 *善用資料庫,幫你管理各種專案進度 資料庫支援匯入、建置、屬性類型指定、關聯、計算...等全面應用,有 Timeline、Board、List、Gallery、Calendar...等多種檢視模式,搭配篩選條件各別檢視以及計算功能,掌握預算不超標。 *團隊協作,邀請他人共同編輯與分配權限 提升團隊協作效率,完美地跨時區、跨平台共同編輯作業,還可以依每位成員或訪客的性質調整編輯管理權限,讓團隊成員可取得最精準的同步資料與即時討論。
【電子書】圖解資料庫的工作原理
在電腦與網路普及的現代社會中,大量的資訊讓我們得以擁抱便利的生活。只要稍微仔細觀察,就能發現生活中充斥了許多資訊。例如,社群網路服務與通訊軟體、電車時刻表、記錄於出勤系統中的時間、地圖軟體中的餐廳資訊、設定手機提醒的行事曆,以及網路購物的商品資訊等。如今,這些資訊在世界各處持續增加,大量的資料要如何儲存,又要儲存在哪裡?處理大量的資料時又該怎麼做?解決這些問題時,資料庫是一項關鍵的技術。 本書包含使用資料庫前必須了解的知識,包括: .資料庫的基礎知識 .資料庫的操作方法 .系統設計的相關知識 .資料庫運用的相關知識
【電子書】Metadata後設資料:精準搜尋、一找就中,數據就是資產!教你活用「描述資料的資料」,加強資訊的連結和透通
了解後設資料(metadata),是資訊科學的必修課。 一本書,幫助我們掌握資料的流通和運用! & Metadata是「描述資料的資料」,有許多中文譯名,包括後設資料、詮釋資料、元資料、元數據等等,本書譯為「後設資料」。 & 後設資料就是用來詮釋資料屬性的資訊,有助於標出資訊儲存的位置、文件紀錄、尋找資源、相關評價和過濾資訊。 & 以手寫信為例,信封上的寄件人和收件人地址、姓名屬於後設資料,但書信內容並不是。以手機通聯紀錄為例,發話人和受話人的手機號碼、通話日期、通話地點和通話時間是後設資料,但交談內容並不是。 & 在網路尚未普及之前,圖書館的卡片目錄就是後設資料,每一張卡片必定有這本書專屬的「索書號」,前往圖書館找書的人們就能迅速找到藏書。 & 隨著網路普及,後設資料已經成為資訊科學的基礎,並且能夠滿足管理和搜尋的需求:電子檔案逐漸取代紙本資料,必須善加管理;為了因應網路上龐大的搜尋,必須讓人迅速找到結果。 & 如果沒有後設資料,所有資訊都必須倚賴人力查找,將導致成本增加。近年來,後設資料的格式也愈來愈多,人們熟悉的大數據(big data),也是源自於後設資料。 & 本書作者傑福瑞.彭蒙藍茲是資訊科學家,曾任威斯康辛大學麥迪遜校區圖書館與資訊研究學院兼任教授、北卡羅來納大學教堂山分校資訊圖書學院助理教授、華盛頓大學資訊學院客座教授。他的線上課程「後設資料:組織和探索資訊」(Metadata: Organizing and Discovering Information)課程,深獲業界人士和學生喜愛。 & 作者提醒我們,後設資料已經不只是在圖書館用來描述和管理藏書的書卡,也可以用於描述和管理網路資源、應用程式介面、描述影音格式,甚至是藝術品和科學資料集,後設資料將會持續演進。 & 閱讀本書,有助於我們: 1.了解後設資料,加速資料的流通傳播和長期保存 2.為資料建立系統、提升資訊科學素養 3.活用後設資料,強化資料的應用(組織、識別、管理、保存、搜尋、發現和獲取) & 一本書,幫助我們了解資料的保存和流通、建立完整的管理系統,進而精準活用數據!
【電子書】Metadata後設資料
了解後設資料(metadata),是資訊科學的必修課。 一本書,幫助我們掌握資料的流通和運用! & Metadata是「描述資料的資料」,有許多中文譯名,包括後設資料、詮釋資料、元資料、元數據等等,本書譯為「後設資料」。 & 後設資料就是用來詮釋資料屬性的資訊,有助於標出資訊儲存的位置、文件紀錄、尋找資源、相關評價和過濾資訊。 & 以手寫信為例,信封上的寄件人和收件人地址、姓名屬於後設資料,但書信內容並不是。以手機通聯紀錄為例,發話人和受話人的手機號碼、通話日期、通話地點和通話時間是後設資料,但交談內容並不是。 & 在網路尚未普及之前,圖書館的卡片目錄就是後設資料,每一張卡片必定有這本書專屬的「索書號」,前往圖書館找書的人們就能迅速找到藏書。 & 隨著網路普及,後設資料已經成為資訊科學的基礎,並且能夠滿足管理和搜尋的需求:電子檔案逐漸取代紙本資料,必須善加管理;為了因應網路上龐大的搜尋,必須讓人迅速找到結果。 & 如果沒有後設資料,所有資訊都必須倚賴人力查找,將導致成本增加。近年來,後設資料的格式也愈來愈多,人們熟悉的大數據(big data),也是源自於後設資料。 & 本書作者傑福瑞.彭蒙藍茲是資訊科學家,曾任威斯康辛大學麥迪遜校區圖書館與資訊研究學院兼任教授、北卡羅來納大學教堂山分校資訊圖書學院助理教授、華盛頓大學資訊學院客座教授。他的線上課程「後設資料:組織和探索資訊」(Metadata: Organizing and Discovering Information)課程,深獲業界人士和學生喜愛。 & 作者提醒我們,後設資料已經不只是在圖書館用來描述和管理藏書的書卡,也可以用於描述和管理網路資源、應用程式介面、描述影音格式,甚至是藝術品和科學資料集,後設資料將會持續演進。 & 閱讀本書,有助於我們: 1.了解後設資料,加速資料的流通傳播和長期保存 2.為資料建立系統、提升資訊科學素養 3.活用後設資料,強化資料的應用(組織、識別、管理、保存、搜尋、發現和獲取) & 一本書,幫助我們了解資料的保存和流通、建立完整的管理系統,進而精準活用數據!
【電子書】資料科學的良器:R語言在行銷科學的應用
Marketing Science Using R 重點探討行銷科學領域 相關統計觀念及R語言 & ※內容詳解行銷科學的應用‧ ※強化解決行銷領域的問題 ※配合豐富的行銷實例說明 ※輕鬆理解並有效解決問題 & 本書適用於對行銷科學方法感興趣的讀者,不管是有心進入行銷領域的資訊管理背景人士,或是尋找量化分析工具的行銷從業人員,提供了理論與實務的最佳參考書籍。 & 本書特色 & *直指行銷科學領域的應用層面,以解決問題導向,而不是純粹的談R程式語法。 *詳細的程式碼解說,每個實例都可以是本書的起讀點。 *捨SPSS、SAS、Stata等有版權的軟體不由,而以開源軟體R切入。 *專章探討資料視覺化,兼顧極簡與吸睛,可突破文字敘述的盲點。 *深入闡述衡量尺度(Scale)的應用,因為並非所有數字都含有一樣多的訊息。 *很多實例出自多變量教科書,如大學生論啤酒,但經R語言重新詮釋,可由旋轉和反射的剛性運動(Rigid motions),而豁然開朗。 *碰到大樣本的集群分析(Cluster analysis),可透過非階層式的K-means方法,找出羣組及各羣組屬性均值。 *多元尺度法(MDS)與知覺圖繪製上,除採用Kruskal壓力係數外,又引人RSQ指標,擴展讀者視野。 *介紹主成份分析(PCA)與知覺定位圖,更引入令人目不轉睛的雙標圖(Biplot),因為雙標圖可以像散布圖一樣輕鬆閱讀。 *介紹近來興起的對應分析(CA),除探討繪製知覺圖外,展現將眾多的樣本和眾多的變數同時繪到同一張圖解上的「全覽圖」。 *互聯網及社群媒體等的興起,導致了空前的資料量,讓人目不暇給。介紹兩大新的見解:推薦系統及情緒分析,以便按圖索驥。 *介紹中文字斷詞器的用法,破解讀者望而生畏的先驗。 *除了直接應用R套件函式外,探索其背後的演算依據及其程序驗證。 & 好評推薦 & 善用AIoT 搶占行銷先機 本書中,廖博士與葉世聰先生巧妙的應用R 語言技術,在與行銷科學相關的統計、資料視覺化、市場區隔、知覺圖及商品推薦等各個行銷領域,以數理分析的架構,逐一闡述,簡明扼要,對有志於行銷的人士而言,實乃非常實用的工具書,也是行銷學界的一大福音。相信讀者閱讀此書也能同我一樣從中獲得喜樂與智慧。--微程式集團(U-Bike 系統商)前副執行長 朱益民 & 數位行銷贏家的致勝關鍵 有幸與廖如龍博士曾經在IBM、Oracle 顧問部門一同共事,知悉他累積相當豐富的產業經驗,並且在大學兼任教職的教學經驗,彙整了產學研專業和產業知能,結合現今熱門的R 語言運用於行銷學領域,如獲神兵利器,編撰成教科書,讓莘莘學子如沐春風、如虎添翼,個人深感欽佩。--前資誠(PwC Taiwan)創新諮詢公司 副總經理 莊明霖 & 結合理論與實務,找出痛點,對症下藥 敝人近年在行銷管理教學經驗中,發現一般行銷管理教科書的內容常常「點到為止」,只交代了概念、案例及策略,但在實務操作面的內容常有不足。廖如龍博士與其共同作者葉世聰先生顯然是知道我的「痛點」,繼《R 語言在管理領域的應用》一書成功地為企業經營管理問題提供解決方案之後,二人繼續以R 語言為應用工具,結合兩人的行銷管理智慧,匯集成本次著作《R 語言在行銷科學的應用》,為有心進入行銷領域的資訊管理背景人士,抑或苦無合適量化分析工具的行銷從業人員,提供了一部結合理論與實務的最佳參考書籍。--國立清華大學科技管理研究所副教授 吳清炎博士 & 穿越理論與實務.傳統與現代的行銷規劃案頭書 行銷主管最大的任務,乃在發掘行銷機會、行銷推廣以及問題的確認,從不同產品市場找尋市場上未被滿足的需求,有效溝通商品特色,同時評估企業行銷活動之有效性,找尋公司行銷過程中的問題點,並加以改善。這項工作極為困難!筆者有幸看到這本《R 語言在行銷科學的應用》的出版,兩位作者深入淺出地從行銷理論、資料分析方法論乃至R 語言的運用,做了理論的詳細說明與介紹,書中也舉出實際的範例運用,是一本不可多得的工具書。--佛光大學管理學系副教授 蔡明達 & ※讀者可以到博碩文化官網輸入書號或書名,下載「範例檔案」參考練習。
【電子書】喬叔帶你上手Elastic Stack:Elasticsearch的最佳實踐與最佳化技巧(iT邦幫忙鐵人賽系列書)
不只會用,本書教你如何正確及有效率的使用 Elastic Stack! 融合多年實戰、顧問及教學經驗,少走冤枉路的絕佳利器! ✍ 集結 Elasticsearch Index 資料管理的重要觀念及最佳實踐原則 ✍ 揭密 App Search 如何運用 Elasticsearch 打造產品的實踐方式 ✍ 收錄 Indexing、Searching、Storage、Sharding 等 59 項最佳化技巧 本書內容改編自第 12 屆 iT 邦幫忙鐵人賽 Elastic Stack on Cloud 組冠軍網路系列文章──《喬叔帶你上手 Elastic Stack 》。作者喬叔在多年 Elastic 相關實務及教學經驗中,發現有太多因不了解原理而踩坑的案例,因此在本書集結 Elasticsearch Cluster 部署、Index 運作原理、Index 資料管理的最佳實踐,並以 App Search 產品實例深入探討其運用 Elasticsearch 打造應用程式的實務作法,以及收錄 Indexing、Searching、Storage、Sharding 等 59 項最佳化技巧,剖析 Elastic Cloud 與自行架設 Cluster 的優劣比較。 無論是剛入門的新手,或是已經在使用 Elastic Stack 的老手,都能更正確及更有效率的運用 Elastic Stack 來處理分析大量資料或是打造滿足商業需求的搜尋功能,絕對是能讓你少走許多冤枉路的絕佳利器。
【電子書】GA到GA4掌握網站數據分析新工具的技術原理與商業思維
快速上手 GA 4,建立工具操作與商業經營的緊密連結! GA 4 與通用版 GA 的異與同 企業的導入策略與步驟 報表結構與數據判讀 「事件導向」的數據模型 手把手完成 GA 4 事件相關的設定 GTM 簡介 深入解析 utm 參數的應用 以 AI 為基礎的豪華版「探索」分析圖表 以數據分析支撐商業決策的實例探討 Google 分析 (GA) 雖然已是大部分企業的標準配備,但因為工具的複雜與善變,讓不少有多年經驗的使用者,仍然覺得難以親近。而新版 GA 4 問世,數據模型的跨代改變,複雜度遽增,更加深了大家的焦慮感。 但如果使用工具時,除了操作,還能夠細究其技術邏輯,深入理解工具反映的商業概念,則會發現複雜、善變的背後,其實有一定的脈絡可循。 本書的設計,以技術架構為經,透過實作範例,完整執行 GA 4 事件設定與進階分析流程,讓負責操作的朋友,可以與通用版 GA 無縫接軌,快速上手;同時以商業策略為緯,詳細解釋了 GA 4 各種功能與報表,在商業情境中的具體意義與應用策略,讓無需動手的決策人員,也可以透過本書,具體瞭解 GA 4 到底在做什麼。
【電子書】大數據時代超吸睛視覺化工具與技術:Excel+Tableau成功晉升資料分析師(第二版)
大數據視覺化類別銷售第一的《Tableau資料分析師進階高手養成實戰經典》的初階系列著作 這本大數據人工智慧人才晉級寶典,讓你具備資料分析力,邁向資料分析師高薪之路! 學習資料視覺化的第一本書 利用強大的視覺化分析技巧與工具 精準找出分析洞見與數據價值 透過Tableau快速製作精緻商業圖表 透過Excel進行資料清洗 × Tableau視覺化工具步驟式教學 了解各類視覺化圖表之特性與使用情境 × 靈活運用資料視覺化圖表 在大數據與資料視覺化的浪潮下,越來越多人在工作上需要面對資料分析的挑戰。無所不在的大數據資料,你想不想也一窺其中的奧妙呢?琳琅滿目的視覺化工具,又該如何選擇呢?現在就來學習與活用專業的資料視覺化工具與技術。 近年來,越來越多功能強大的視覺化工具推出,而Tableau是其中絕對不可錯過的一款超強軟體,其在美學設計、資料處理彈性、資料連線等功能上,都很切合現今企業的需要,也非常適合作為企業組織的核心分析與視覺化工具,可幫助資料詮釋者說出想要傳達的故事,成功吸引眾人目光。 本書是《Tableau資料分析師進階高手養成實戰經典》的初階系列著作,主要介紹資料視覺化工具概念與技術,包括視覺化原理、工具使用時機、圖表挑選準則等,內容除了教導你如何透過Excel進行資料清洗之外,也重點解析Tableau從安裝到到實務操作的一連串過程,最後可親手做出專屬於自己的資料視覺化網頁。此外,附錄中整理了數十種視覺化工具資訊,可滿足你的各種情境之需求。
【電子書】Google Analytics網站資料分析:網路行銷與商務決策的利器
網站分析的主要工作包括:資料收集、報表製作、分析解讀、進行決策、執行落實、優化改進等。Google Analytics四大類型的報表提供不同的數據洞察力,包括:受眾分析、流量來源、使用者行為、使用者轉換數據等四個維度的數據,可依使用者需求獲得各式的資訊。 本書係以入門者的角度撰寫,跟著書中所編排的架構學習,將可學會許多Google Analytics相當實用的功能,書中重要的觀念都有「示意圖」互相對照,並可藉由範例製作得到Google Analytics精要知識與解讀資訊能力。 【本書重點】 ✔快速了解網站分析與Google Analytics的基礎知識 ✔專為電商經營者打造的零基礎Google Analytics入門課程 ✔完整剖析Google Analytics四大報表的重要知識點 ✔羅列GA網站資料分析過程中的重要觀念 ✔報表製作的利器Google Data Studio實作 【精彩內容】 數位行銷的定義與特性、網站經營與數據分析 了解Google Analytics網站分析的作法、運作的原理、申請Google Analytics帳戶 完整剖析Google Analytics四大報表:目標對象、客戶開發、行為、轉換 打造量身訂做的報表:資訊主頁、自訂報表、自訂快訊、已儲存報表 提升數據分析的品質:資料層級、取樣數據、規則運算式、實用分析工具 「帳戶」設定、「資源」設定、「資料檢視」設定 內容分組、進階區隔、篩選器、管道分組 Google Data Studio(數據分析)報表綜合實作、分享報表
【電子書】R語言邁向Big Data之路:王者歸來
王者回來了! R語言與Big Data的最強結合 重磅新增 2015年這本書的第一版上市,隨即獲得許多好評,也獲得許多大專院校選為上課教材,這本書是第2版,相較第一版基本上增訂下列資訊: 將R的軟體改為最新版測試,可以參考附錄A。 附贈全書實例檔案。 讀者附贈是非、選擇、複選題的題目與解答,這些題目是美國Silicon Stone Education的國際證照考古題,另外加贈偶數實作題解答。 教學資源說明 本書所有習題實作題均有習題解答,如果您是學校老師同時使用本書教學,歡迎與本公司聯繫,本公司將提供習題解答。 另外,本書也有教學簡報檔案供教師教學使用。 讀者資源說明 請至本公司網頁deepmind.com.tw下載本書程式實例,此外,讀者也可從所下載的資源獲得實作題偶數題的解答。 本書特色 1:完全零基礎可以輕鬆學習。 2:學習最新版R語言。 3:從無到有一步一步教導讀者R語言的使用。 4:學習本書不需要有統計基礎,但在無形中本書已灌溉了統計知識給你。 5:精彩的圖表製作,讀者可以學會資料視覺化使用R。 6:完整講解所有R語言語法與使用技巧。 7:豐富的程式實例與解說,讓你事半功倍。 8:全書涵蓋是非、選擇、複選習題解答。 9:讀者贈送全部偶數題實作題解答。
【電子書】大數據時代超吸睛視覺化工具與技術:Tableau資料分析師進階高手養成實戰經典
大數據視覺化類別銷售第一的《Excel+Tableau成功晉升資料分析師》的進階系列著作 這本大數據人工智慧人才晉級寶典,讓你具備資料分析力,邁向資料分析師高薪之路! 內容詳解完整的Tableau進階應用技巧 配合豐富的Tableau實戰真實案例說明 快速掌握視覺化商業圖表的製作關鍵技術 Tableau視覺化工具步驟式教學 × 靈活運用資料視覺化圖表 提升資料分析實務能力 × 精準且有效率呈現資料價值 在大數據與資料視覺化的浪潮下,越來越多人在工作上需要面對資料分析的挑戰。近年來,持續推出了功能強大的視覺化工具,而Tableau是其中絕對不可錯過的一款超強軟體,其在美學設計、資料處理彈性、資料連線等功能上,都很切合現今企業的需要,也非常適合作為企業組織的核心分析與視覺化工具,可幫助資料詮釋者說出想要傳達的故事,成功吸引眾人的目光。 本書是大數據視覺化類別銷售第一的《Excel+Tableau成功晉升資料分析師》的進階系列著作,內容除了解說Tableau的完整功能及進階分析技巧之外,還有清楚詳盡的步驟說明,更介紹Tableau的彈性設計模組,並提供豐富的實戰案例,可讓你製作出優秀的視覺化圖表,充分發揮出這套強大視覺化Tableau軟體的威力,是從事產品經理、專案經理、資料分析人員、資料研究人員等工作的人不可或缺的首選之作。 作者將Tableau的實務知識分為入門、中級、高級、專家等四個層級,而本書在內容規劃上,主要教導讀者學會進階地圖、進階儀表板設計、資料故事設計等中級技巧,以及資料科學實作、資料分層管理LOD技巧、XY座標軸地圖設計等高級技巧。當你學完本書之後,你不但可逐步做出自己的資料視覺化圖表,還能全面提升資料處理分析力及圖表美學設計力,並大大增加Tableau的實務經驗。 【目標讀者】 ♕想學習進階資料分析技巧的人。 ♕想學習Tableau進階技巧的人。 ♕想了解如何透過Tableau設計進階地圖的人。 ♕想透過Tableau實戰進階函數應用的人。 ♕想實戰Tableau巨量資料分析的人。 本書特色 ♔了解Tableau完整功能。 ♔學習Tableau進階分析。 ♔解說Tableau設計模組。 ♔提供Tableau實戰案例。 ♔運用Tableau豐富圖表。 ♔提升Tableau實作經驗。
【電子書】大數據分析Excel Power BI全方位應用(第三版)
台灣微軟技術經理 王恩琦 專業推薦! 隨著電腦技術的發展,資料存儲量呈現倍增成長,以資料採礦為核心的Business Intelligence(BI)顯然成為IT和其他行業的必爭之地,同時市場潮流Big Data讓巨量資料分析變得更重要,商業智慧也順理成章成為企業注重的一環,專業的分析人員更是市場人才寵兒。 基於此利基Microsoft Excel Power BI實現在數據分析與商業智慧分析領域,達到方便且有效率的作業模式。使用Excel Power BI可迅速完成以往只有透過專業商業智慧工具或花費大量時間才能完成的任務,它同時提供蒐集合併清理內外部資料來源功能(Power Query)、精華版OLAP工具(Power Pivot)、視覺化分析資料探索(Power View)與2D/3D地圖資訊分析(Power Map),協助企業能夠整合來自不同來源的巨量資料並轉化成資訊和洞察,應用在市場策略上,最終達到令人滿意的效果。同時,Microsoft Power BI服務除了具有Microsoft Excel Power BI功能之外,更增加許多視覺化效果的模板,而且還能客製化。 ■ 適用Excel 2019/2016/2013 ■ 瞭解自助式商業智慧分析流程,提升人員決策能力 ■ 學習利用Power BI工具建立視覺化圖表分析 ■ 學習如何使用Excel Power Pivot、Power View、Power Map與Power Query ■ 內容逐步實際操作,從入門到進階,縮短學習時間,讓您有效率的抓住學習重點 ■ 帶領您瞭解Power BI服務的範疇,快速掌握Power BI Desktop的使用技巧
【電子書】實戰機器學習:使用Spark
學習熱門的機器學習演算法 本書介紹熱門的機器學習演算法及其實作方式。你將會了解如何在Spark ML這套開發框架之內,實作各種機器學習概念。首先,我們會帶你在單一節點與多重節點的運算叢集上,完成Spark的安裝工作;接著,說明如何執行以Scala和Python語言撰寫的Spark ML程式;然後以幾套資料集為範例,深入探索分群、分類與迴歸;最後,利用Spark ML來處理文字資料。 打造可以應用於工作中的機器學習程式 弄懂概念之後,便可運用來實作演算法,可能是從頭開始,或是將既有的系統轉移到這個新平台,像是從Mahout或Scikit轉移到Spark ML。當你讀完本書之時,應該能夠善加運用Spark,打造可以應用於工作中的機器學習程式。 本書將帶您: .實際動手嘗試最新版的Spark ML .以Scala與Python語言撰寫Spark程式 .在本機以及Amazon ECS雲端平台上,安裝並設置Spark開發環境 .取用公開的機器學習資料集,使用Spark進行資料的載入、處理、清理與轉換等動作 .處理巨量的文字資料,包括特徵萃取,並使用文字資料作為輸入餵給機器學習模型 .撰寫Spark函式,評估機器學習模型的表現能力