Computation of the Transonic Flow About a Swept Wing in the Presence of an Engine Nacelle
"Computation of the Transonic Flow About a Swept Wing in the Presence of an Engine Nacelle" presents a detailed study on the numerical modeling of complex aerodynamic phenomena. This technical report focuses on the challenges of simulating transonic flow, where airflow transitions between subsonic and supersonic speeds, around a swept wing with an engine nacelle. The work provides valuable insights into the methodologies and computational techniques required to accurately predict airflow behavior in such complex configurations.Researchers and engineers in aerospace engineering will find this report to be a useful resource for understanding the intricacies of computational fluid dynamics applied to advanced aircraft designs. The detailed analysis and methodologies described offer a foundation for further research and development in aerodynamic simulation.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
To Establish Loan Guarantee Programs to Develop Biochar Technology Using Excess Plant Biomass, to Establish Biochar Demonstration Projects on Public Land, and for Other Purposes
The BiblioGov Project is an effort to expand awareness of the public documents and records of the U.S. Government via print publications. In broadening the public understanding of government and its work, an enlightened democracy can grow and prosper. Ranging from historic Congressional Bills to the most recent Budget of the United States Government, the BiblioGov Project spans a wealth of government information. These works are now made available through an environmentally friendly, print-on-demand basis, using only what is necessary to meet the required demands of an interested public. We invite you to learn of the records of the U.S. Government, heightening the knowledge and debate that can lead from such publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
USDA Radiological Monitoring Handbook
The "USDA Radiological Monitoring Handbook" provides a comprehensive guide to the principles and practices of radiological monitoring, specifically within the context of agricultural environments. Published in 1962, this handbook offers invaluable insights into the methods and technologies used to assess and manage radiological contamination. It covers a range of topics, including sample collection, radiation measurement techniques, and data interpretation. Authored by the United States Agricultural Research Service and the USDA radiological monitoring program, this resource is an essential reference for environmental scientists, agricultural professionals, and anyone involved in ensuring the safety and sustainability of our food and ecosystems. It offers a detailed understanding of how to effectively monitor and mitigate the impacts of radiological elements in the environment.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Evaluation of Beef Cattle Feedlot Waste Management Alternatives
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Illustrated Catalogue of Hand and Power Pumps, Hydrants, Etc
This illustrated catalogue showcases a wide array of hand and power pumps, hydrants, and related equipment manufactured by W & B. Douglas. A valuable resource for historians, engineers, and collectors, this catalogue provides detailed illustrations and specifications of various pumping technologies prevalent during the period it was published. From simple hand-operated pumps to more complex power-driven systems, the catalogue offers insights into the evolution of water management and distribution. The inclusion of hydrants further emphasizes the importance of firefighting infrastructure and urban planning during the era. This historical document serves as a testament to the ingenuity and innovation of the period, providing a glimpse into the tools and technologies that shaped the development of water systems.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Comparative Tests of Small Laminated and Solid Spruce Beams for Aeroplane Construction
Comparative Tests of Small Laminated and Solid Spruce Beams for Aeroplane Construction, by Sydney V. James, presents a detailed investigation into the structural properties of spruce wood used in early aircraft design. Published in 1910, this report meticulously documents the results of comparative tests performed on small laminated and solid spruce beams, providing critical data for engineers and designers of the time.The study focuses on evaluating the strength and durability of these beams under various stress conditions, with the goal of optimizing material selection and construction techniques for safer and more efficient aeroplanes. This work offers valuable insights into the challenges and innovations of early aviation engineering and remains a significant resource for understanding the historical development of aircraft materials.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
EPANET 2 Users Manual
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Meeting U.S. Defense Needs in Space
U.S. defense industrial base (DIB) deterioration and increased DOD interest in space exploitation highlights the U.S. satellite industry as one DIB sector requiring analysis. Despite DIB problems, this industry must maintain the capability to produce advanced satellites for the DOD. Commercial-Military Integration (CMI) will, according to experts, eliminate problems inherent with a separate DIB. This research focused on investigating satellite industry capability to meet DOD space requirements. Through literature review, case study analysis and interviews, effects of a shrinking DIB on the satellite industry were determined. A model for DIB strength was developed and analyzed through literature review. General Electric Aircraft Engines (GEAE) case study showed the potential for commercializing the DIB. Research focused on satellite industry executives whose perspectives illustrated industry capability to meet defense space needs.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Aircraft Maintenance Performance
The Air Force has implemented various aircraft maintenance organizational structures. The implementation of the Objective Wing in the early 1990s was the latest occurrence of reorganization. This research looks at the effect of the type of aircraft maintenance organizational structure on aircraft maintenance performance. The type of organizational structure was defined by the functional centralization of the on-equipment maintenance. Aircraft maintenance performance was measured using TNMCM rates, fix rates, repeat/recur rates, man-hours per flying hour, and scheduling effectiveness rates. Three F-15 wings and three F-16 wings were selected to compare the changes in aircraft maintenance performance and to determine if the organizational structure had a significant influence on aircraft maintenance performance. Comparison of means and regression analysis were used to investigate the main effects of organizational structure and the moderating effects of several additional factors on aircraft maintenance performance. The aircraft maintenance organizational structure was determined to have a significant positive influence on at least one aircraft maintenance performance measure for five of the six experimental group wings. Various moderating factors also had various influences on aircraft maintenance performance.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Using Statistical Process Control Methods to Classify Pilot Mental Workload
The problem of classifying pilot mental workload is important to the United States Air Force. Pilots are more subject to errors and G-induced loss of consciousness during periods of mental overload and task saturation. Often the result is the loss of aircraft, and in extreme cases, the loss of the pilot's life. Current research efforts use different psychophysiological features to classify pilot mental workload. These include cardiac, ocular, respiratory, and brain activity measures. The focus of this effort is to apply statistical process control methodology on different psychophysiological features in an attempt to classify pilot mental workload. The control charts track these features throughout the flight, and classify a segment as high workload if the measurements of these features are greater than predefined control limits. We find that certain control charts prove to be effective workload classifiers and maintain high classification accuracies when applied to other flight data.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The Need for Speed
Transformation to the next level of technology is a pressing issue for the Air Force's strategic planers. Just how much of a leap in technology do engineers try to take when designing a new system? The answer depends if new discoveries have increased the technology available when they design a new system. However, it makes little sense to build new equipment that does not provide an improved capability or a more reliable system. That being said, the next long-range strike platform could take that technological leap and be a very fast near-space vehicle. Past events, such as the 2004 X-43 launch, show that technological progress is occurring on critical hypersonic components. While this is not a paper on the technology per se, it covers the implications of building and operating a "hypersonic" bomber force. This paper addresses the question of whether or not the hypersonic bomber is worth the required investment and covers several aspects involved with hypersonic bomber operations.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Performance of Military Cargo Aircraft Using Required Navigation Performance Departures
Maximum takeoff weight for cargo aircraft is affected by many factors including the aircraft's ability to safely climb out to altitude. When there are obstacles in the departure path, the total weight of the aircraft may have to be reduced to ensure the aircraft will achieve the appropriate climb rate to clear the obstacles. During times of limited visibility, aircrews traditionally rely on predetermined departure paths limited by the aircraft navigation capability and the ground based navigation aids. A Required Navigation Performance (RNP) departure with accuracy down to 0.3 mile could allow the aircraft to safely navigate around obstacles with better precision, allowing a greater takeoff weight. This study compared current instrument departure procedures with predicted RNP 0.3 departures by computing the maximum allowable weight limit for the C-5 aircraft under a range of operating temperatures at three separate locations. The results showed that an increased precision of the RNP 0.3 departures had an operational advantage by allowing an increased cargo, passenger, or fuel load. The amount of weight increase was dependent upon a variety of factors, to include airframe type and location. To receive certification from the FAA to fly RNP 0.3 procedures, specific requirements such as training and equipment are necessary. Current configurations of the C-5 aircraft do not support RNP 0.3 procedures.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Technical Feasibility of Loitering Lighter-Than-Air Near-Space Maneuvering Vehicles
The near-space region of earth's atmosphere above 20 kilometers altitude is greatly underutilized. Lighter-than-air maneuvering vehicles, or airships, using the principle of buoyancy can take advantage of this region to become potential platforms for precision navigation, environmental monitoring, communication relays, missile warning, surveillance, and weapon delivery. These vehicles purportedly provide persistent coverage over large areas of the earth's surface at substantially lower costs than orbiting satellites. This study investigated the technical requirements to loiter an operational payload within this high altitude region using a lighter-than-air maneuvering platform. A parametric analysis was conducted to identify the critical technologies needed to achieve operational payload, power, altitude, and stationkeeping requirements. The research concluded feasibility of stationkeeping a 1000 kg payload in lower near-space (20-25 km) using current airship technologies. Solar powered electric propellers provided the best overall near-space loiter capability for missions beyond 30 days. Additional loiter capability can be attained for shorter missions using fuel cell technologies. Technology improvements in the airship's drag coefficient, envelope fabric density, and payload mass and power requirements are required to attain altitudes beyond 25 km.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Optimal Re-Entry Trajectory Terminal State Due to Variations in Waypoint Locations
The Air Force's Prompt Global Reach concept describes the desire to have a capability to reach any target within a 9000 nautical mile radius within two hours of launch. To meet this objective, much effort is being devoted to hypersonics and re-entry vehicles. Given the limited maneuverability of hypersonic vehicles, computational modeling is used to generate trajectories before launch to strike intended targets. In addition to endpoint (target) constraints, additional waypoints may constrain the trajectory. This research finds the optimal trajectory which satisfies the endpoint and waypoint constraints, and then investigates where else the vehicle can go while still meeting the mission objectives and the penalty for making such maneuvers. The result of this research is a direct numerical solution technique for mapping the sensitivity of the terminal state as a function of additional waypoint location. Multiple cases are presented including a simple endpoint-to-endpoint scenario and a waypoint included scenario, with a Gauss pseudospectral solver as the direct numerical solver.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Waste Vegetable Oil as an Alternative Fuel for Diesel Vehicles
Alternative fuels have become a hot topic in the news as the cost of oil remains volatile. Questions of whether acquiring alternative fuels are worth the cost, logistics, and political implications are being asked. A possible solution may be currently thrown away by Wright Patterson Air Force Base's (WPAFB) dining establishments in the form of waste vegetable oil (WVO). This study investigated the benefits and costs of pursuing the installation of a WVO to Straight Vegetable Oil fuel processing center and using the fuel to power some of the base's diesel vehicles. A pilot program was fielded utilizing the Wright Patterson Club for WVO and the Recycling Center for processing and use. From the pilot program, data was extrapolated to determine the total cost and payback period to operate the system. The benefits of reducing spills and emissions were also realized.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Problems in Aircraft Maintenance
This study is to analyze aircraft maintenance procedures in World War II; examine new requirements engendered by present trends; explore fields of Army, Navy, and Air Force to develop maximum common ground, and recommend maintenance methods and procedures for the future.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Comparative Tests of Small Laminated and Solid Spruce Beams for Aeroplane Construction
Comparative Tests of Small Laminated and Solid Spruce Beams for Aeroplane Construction, by Sydney V. James, presents a detailed investigation into the structural properties of spruce wood used in early aircraft design. Published in 1910, this report meticulously documents the results of comparative tests performed on small laminated and solid spruce beams, providing critical data for engineers and designers of the time.The study focuses on evaluating the strength and durability of these beams under various stress conditions, with the goal of optimizing material selection and construction techniques for safer and more efficient aeroplanes. This work offers valuable insights into the challenges and innovations of early aviation engineering and remains a significant resource for understanding the historical development of aircraft materials.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
On Supersonic Compressors and Nozzles (Supplement to AMP Report 82.1R)
This report, "On Supersonic Compressors and Nozzles," by Kurt Otto Friedrichs, is a specialized study focusing on the theoretical and applied aspects of supersonic airflow. Originally issued as a supplement to AMP Report 82.1R, this document delves into the complex dynamics of compressors and nozzles operating at supersonic speeds. The research likely explores the design, performance, and operational characteristics of these critical components, essential in advanced aeronautical and engineering applications. While specific details are not provided, the report likely includes mathematical models, experimental data, and theoretical analyses relevant to the optimization and understanding of supersonic flow behavior in compressors and nozzles. This work offers valuable insights for engineers and scientists involved in the development of high-speed propulsion systems and related technologies.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Reliability and Productivity Modeling for the Optimization of Separated Spacecraft Interferometers
As technological systems grow in capability, they also grow in complexity. Due to this complexity, it is no longer possible for a designer to use engineering judgement to identify the components that have the largest impact on system life cycle metrics, such as reliability, productivity, cost, and cost effectiveness. One way of identifying these key components is to build quantitative models and analysis tools that can be used to aid the designer in making high level architecture decisions. Once these key components have been identified, two main approaches to improving a system using these components exist: add redundancy or improve the reliability of the component. In reality, the most effective approach to almost any system will be some combination of these two approaches, in varying orders of magnitude for each component. Therefore, this research tries to answer the question of how to divide funds, between adding redundancy and improving the reliability of components, to most cost effectively improve the life cycle metrics of a system. While this question is relevant to any complex system, this research focuses on one type of system in particular: Separate Spacecraft Interferometers (SSI). Quantitative models are developed to analyze the key life cycle metrics of different SSI system architectures. Next, tools are developed to compare a given set of architectures in terms of total performance, by coupling different life cycle metrics together into one performance metric. Optimization tools, such as simulated annealing and genetic algorithms, are then used to search the entire design space to find the "optimal" architecture design. Sensitivity analysis tools have been developed to determine how sensitive the results of these analyses are to uncertain user defined parameters. Finally, several possibilities for the future work that could be done in this area of research are presented.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Multi-Dimensional Measurements of Combustion Species in Flame Tube and Sector Gas Turbine Combustors
The higher temperature and pressure cycles of future aviation gas turbine combustors challenge designers to produce combustors that minimize their environmental impact while maintaining high operation efficiency. The development of low emissions combustors includes the reduction of unburned hydrocarbons, smoke, and particulates, as well as the reduction of oxides of nitrogen (NO(x)). In order to better understand and control the mechanisms that produce emissions, tools are needed to aid the development of combustor hardware. Current methods of measuring species within gas turbine combustors use extractive sampling of combustion gases to determine major species concentrations and to infer the bulk flame temperature. These methods cannot be used to measure unstable combustion products and have poor spatial and temporal resolution. The intrusive nature of gas sampling may also disturb the flow structure within a combustor. Planar laser-induced fluorescence (PLIF) is an optical technique for the measurement of combustion species. In addition to its non-intrusive nature, PLIF offers these advantages over gas sampling: high spatial resolution, high temporal resolution, the ability to measure unstable species, and the potential to measure combustion temperature. This thesis considers PLIF for in-situ visualization of combustion species as a tool for the design and evaluation of gas turbine combustor subcomponents. This work constitutes the first application of PLIF to the severe environment found in liquid-fueled, aviation gas turbine combustors. Technical and applied challenges are discussed. PLIF of OH was used to observe the flame structure within the post flame zone of a flame tube combustor, and within the flame zone of a sector combustor, for a variety of fuel injector configurations.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Multi-Dimensional Measurements of Combustion Species in Flame Tube and Sector Gas Turbine Combustors
The higher temperature and pressure cycles of future aviation gas turbine combustors challenge designers to produce combustors that minimize their environmental impact while maintaining high operation efficiency. The development of low emissions combustors includes the reduction of unburned hydrocarbons, smoke, and particulates, as well as the reduction of oxides of nitrogen (NO(x)). In order to better understand and control the mechanisms that produce emissions, tools are needed to aid the development of combustor hardware. Current methods of measuring species within gas turbine combustors use extractive sampling of combustion gases to determine major species concentrations and to infer the bulk flame temperature. These methods cannot be used to measure unstable combustion products and have poor spatial and temporal resolution. The intrusive nature of gas sampling may also disturb the flow structure within a combustor. Planar laser-induced fluorescence (PLIF) is an optical technique for the measurement of combustion species. In addition to its non-intrusive nature, PLIF offers these advantages over gas sampling: high spatial resolution, high temporal resolution, the ability to measure unstable species, and the potential to measure combustion temperature. This thesis considers PLIF for in-situ visualization of combustion species as a tool for the design and evaluation of gas turbine combustor subcomponents. This work constitutes the first application of PLIF to the severe environment found in liquid-fueled, aviation gas turbine combustors. Technical and applied challenges are discussed. PLIF of OH was used to observe the flame structure within the post flame zone of a flame tube combustor, and within the flame zone of a sector combustor, for a variety of fuel injector configurations.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft
Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance vary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are: (1) determining what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major u.s. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort-topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Biomimetic Micro Air Vehicle Testing Development and Small Scale Flapping-Wing Analysis
The purpose of this research was to develop testing methods capable of analyzing the performance of a miniature flapping-winng mechanism that can later be adapted for the development a Biomimetric flapping-wing micro vehicle (MAV). Three small scale flapping mechanisms capable of single plane flapping, flapping with active pitch control, and flapping/pitch with out-of-plane movement were designed using SolidWorks. The flapping mechanism was mounted on a supported by air bearings, and thrust was measured for a variety of conditions. The testing was conducted using wings composed of fiber and Mylar in four different size configurations, with flapping speeds ranging from 3.5 - 15Hertz. The thrust was measured using anaxially mounted 50 gram load cell which resulted in an accuracy of + 0.1 gram. The flapping mechanism was then mounted on a 6-component force balance to measure dynamic loading, which demonstrated the ability to gather time-accurate data within a single flapping stroke at speeds as high as 15Hz. High speed cameras were also used for capturing images of how the structure of the wing changed at various testing conditions. Overall this research successfully demonstrated testing procedures that can be utilized in developing scale flapping-wing micro air vehicles.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Design Concepts for Zero-G Whole Body Cleansing on ISS Alpha
This document was originally published in 1997 as a International Space University Master of Space Studies student's project. While the specifics may be a little dated, the results gleaned are still relevant and valid. Johnson Space Center is now abuzz with preparations for the International Space Station. The work on the various systems for the U.S. Habitation Module will begin in 1998. As a prelude, the Flight Crew Support Division perceived the need to take a closer, more critical took at planning the Whole Body Cleansing function for ISS. This report is an endeavour to retrieve all data available on whole body cleansing mechanisms used, past and present, by the Russians and the Americans, analyze it and create design concepts for products/product systems for zero-g whole body cleansing on ISS Alpha, for typical duration of about 90 days. This report takes a close look at the Skylab collapsible shower, the Mir shower/sauna, the full body cleansing methods currently in use onboard the Space Shuttle and Mir and at the Whole Body Shower designed and tested for Space Station Freedom. It attempts to "listen" carefully to what the Mir astronauts (Norm Thagard, Shannon Lucid and John Blaha) have to say about their personal hygiene experiences during their recent stays on Mir. The findings in the report call for a change in paradigm. What is good for Earth conditions is not necessarily good for Zero-g! It concludes that a shower is not a good idea for the ISS. The final concept that is proposed reflects very strongly what the Mir astronauts would like to have and to use onboard a station like the ISS, The report concludes with directions of how to take the "idea" further and realize it in the form of a product system for Whole Body Cleansing onboard the ISS.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Evolving Self-Organized Behavior for Homogeneous and Heterogeneous UAV or UCAV Swarms
This research designs an off-line evolutionary system to create multi-UAV behavior capable of searching for and attacking targets. The design for this behav- ior system assumes the UAVs have no apriori knowledge about undetected targets, UAVs, or the environment. In addition, the system does not rely upon global com- munications. WIth regard to the behavior design and approach, self-organization is a potential solution since exemplar systems relying upon it tend to be exceptionally robust, scaleable, and -exible. The UAV behavior, evolved with a genetic algorithm, relies upon a behavior archetype architecture. This design allows the system to evolve a small set of behaviors that are selected based upon particular sense inputs to the UAVs. The sense inputs summarize observable characteristics of each UAVs environmental representation such as the density of sensed UAVs and a simple target associated pheromone.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Effects of Moisture Content in Solid Waste Landfills
Solid waste landfills are an extremely complex and heterogeneous environment. Modeling the biodegradation processes within a landfill must involve an understanding of how environmental factors affect these processes. Arguably, the most important environmental factor influencing biodegradation processes is solid waste moisture content. This thesis effort, which is an extension of a system dynamics model previously presented by Colborn (1997) and amended by Benter (1999), attempts to understand and model the effects of moisture content on waste degradation and landfill gas generation. The new moisture structure that was added to the previous models provides a better representation of the impact of moisture on aerobic and anaerobic hydrolysis and bacterial populations, and ultimately, gas generation. It also gives a clearer picture of how moisture is distributed between the solid waste and the void spaces within a landfill. Leachate and moisture infiltration flows were introduced into the model as a means to replicate the "wet-cell" or bioreactor landfill.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
An Experimental Study of the Effects of Automation on Pilot Situational Awareness in the Datalink ATC Environment
An experiment to study how automation, when used in conjunction with datalink for the delivery of air traffic control (ATC) clearance amendments, affects the situational awareness of aircrews was conducted. The study was focused on the relationship of situational awareness to automated Flight Management System (FMS) programming and the readback of ATC clearances. Situational awareness was tested by issuing nominally unacceptable ATC clearances and measuring whether the error was detected by the subject pilots. The experiment also varied the mode of clearance delivery: Verbal, Textual, and Graphical. The error detection performance and pilot preference results indicate that the automated programming of the FMS may be superior to manual programming. It is believed that automated FMS programming may relieve some of the cognitive load, allowing pilots to concentrate on the strategic implications of a clearance amendment. Also, readback appears to have value, but the small sample size precludes a definite conclusion. Furthermore, because textual and graphical modes of delivery offer different but complementary advantages for cognitive processing, a combination of these modes of delivery may be advantageous in a datalink presentation.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Computational Design of Upperstage Chamber, Aerospike, and Cooling Jacket for Dual-Expander Rocket Engine
To increase the performance of the current US satellite launch capability, new rocket designs must be undertaken. One concept that has been around since the 50s but yet to be utilized on a launch platform is the aerospike, or plug nozzle. The aerospike nozzle concept demonstrates globally better performance compared to a conventional bell nozzle, since the expansion of the jet is not bounded by a wall and therefore can adjust to the environment by changing the outer jet boundary. A dual-expander aerospike nozzle (DEAN) rocket concept would exceed the Integrated High Payoff Rocket Propulsion Technology initiative (IHPRPT) phase three goals. This document covers the design of the chamber and nozzle of the DEAN. The validation of the design of the DEAN are based on the model in Numerical Propulsion System Simulation (NPSS TM), added with the nozzle design from Two-Dimensional Kinematics (TDK 04TM). The result is a rocket engine that produces 57,231 lbf (254.5 kN) of thrust at an Isp of 472 s. Additionally, the oxygen wall is made of silicon carbide, with a melting point of 5580 R (3100 K), and has a maximum temperature at the throat of 1625 R (902 K).This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Surface Acoustic Wave Devices as Chemical Vapor Sensors
The objective of this research is to develop a transducer for recognition of molecular changes in the presence of chemical vapors. This transducer is tested using polymer sensing layers known to be sensitive to ethanol vapors. A surface acoustic wave device is selected as the transducer element due to low cost, high surface sensitivity, and sensitivity. These devices are designed and fabricated in-house, and a polymer sensing layer applied. The frequency response of the coated device is probed both with and without the presence of airborne ethanol molecules in a vapor stream. By analyzing the changes in the amplitude and phase of the frequency response near resonance, vapor detection was conclusively demonstrated. Additionally, the mechanism of change was identified, allowing future work in optimizing the sensitivity of the device. Other future work will include application of a biomolecular sensing layer, design of circuitry for a portable devices, and fabrication of a MEMS preconcentrator. The final goal of the project is a portable sensor array using surface acoustic wave devices coated with different bio-molecules.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Isomer Energy Source for Space Propulsion Systems
Presented in this work are the results of an investigation of alternative means for powering spacecraft and launch vehicles with energy sources other than chemical combustion. Nuclear Thermal Propulsion (NTR) and the energy release of a nuclear spin isomer present potential for increased rocket performance with a compact, high-energy fuel sources replacing the combustion engines of the Delta IV-H 1st and 2nd stage vehicles. NTR was represented by the Nuclear Engine for Rocket Vehicle Application, CERMET, and the Particle Bed Reactor (PBR) fission designs, while the isomer hafnium-178-m2 was investigated in a PBR configuration. Energy storage levels of 1.3 GJ/g are possible with this material, though the successful triggering and maintenance of a chain reaction in this material are still debated topics within the scientific community. The best application for either technology is as an upper stage vehicle with the shielding requirements reduced to that of just a shadow shield between the core and the spacecrafts upper structure.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Engineering Review of Alternative Onsite Wastewater Treatment
This engineering review examines alternative onsite wastewater treatment technologies and their application. It provides a detailed analysis relevant to environmental engineers, water resource managers, and policymakers involved in wastewater management. The review encompasses a range of treatment methods, assessing their effectiveness, cost, and environmental impact. This resource offers valuable insights into the design, implementation, and optimization of decentralized wastewater treatment systems. It is suitable for professionals seeking to improve water quality and manage wastewater effectively.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Computation of the Transonic Flow About a Swept Wing in the Presence of an Engine Nacelle
"Computation of the Transonic Flow About a Swept Wing in the Presence of an Engine Nacelle" presents a detailed study on the numerical modeling of complex aerodynamic phenomena. This technical report focuses on the challenges of simulating transonic flow, where airflow transitions between subsonic and supersonic speeds, around a swept wing with an engine nacelle. The work provides valuable insights into the methodologies and computational techniques required to accurately predict airflow behavior in such complex configurations.Researchers and engineers in aerospace engineering will find this report to be a useful resource for understanding the intricacies of computational fluid dynamics applied to advanced aircraft designs. The detailed analysis and methodologies described offer a foundation for further research and development in aerodynamic simulation.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Assembly, Integration, and Test Methods for Operationally Responsive Space Satellites
Current government and industry standards in spacecraft testing result in an Assembly, Integration, and Test (AIT) timeline greater than six months. These standards will not support the vision of Operationally Responsive Space (ORS) to deploy a satellite within six days to fill an urgent need. Using the Air Force Research Laboratory's Plug-and-Play Satellite (PnPSat), multiple Rapid AIT trials were conducted. By exercising the AIT process with various spacecraft configurations and personnel, methods for reducing or modifying traditional testing regimen were investigated.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Evaluation of Beef Cattle Feedlot Waste Management Alternatives
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
David Taylor Report
The "David Taylor Report 267" offers insights into naval research and ship design methodologies from the U.S. Experimental Model Basin. This report, stemming from the legacy of the David W. Taylor Model Basin and related naval research centers, details experiments and findings relevant to naval architecture and hydrodynamics. It represents a significant contribution to the field, reflecting the ongoing efforts of the Naval Ship Research and Development Center and its successor organizations to advance maritime technology. This historical document provides valuable data and methodologies for researchers and engineers interested in the evolution of naval science.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
UAS Collision Avoidance Algorithm That Minimizes the Impact on Route Surveillance
A collision avoidance algorithm is developed and implemented that is applicable to different types of unmanned aerial systems ranging from a single platform with the ability to perform all collision avoidance functions independently to multiple vehicles performing functions as a cooperative group with collision avoidance commands computed at a ground station. The algorithm draws on the unique benefits of several theoretical approaches to conflict detection and resolution and combines them into one algorithm while addressing the limitations of those individual methods.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Numerical Study of Rarefied Hypersonic Flow Interacting With a Continuum Jet
An uncoupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC) technique is developed and applied to provide solutions for continuum jets interacting with rarefied external flows. The technique is based on a correlation of the appropriate Bird breakdown parameter for a transitional-rarefied condition that defines a surface within which the continuum solution is unaffected by the external flow-jet interaction. The method is applied to two problems to assess and demonstrate its validity; one of a jet interaction in the transitional-rarefied flow regime and the other in the moderately rarefied regime. Results show that the appropriate Bird breakdown surface for uncoupling the continuum and non-continuum solutions is a function of a non-dimensional parameter relating the momentum flux and collisionality between the two interacting flows. The correlation is exploited for the simulation of a jet interaction modeled for an experimental condition in the transitional-rarefied flow regime and the validity of the correlation is demonstrated. The uncoupled technique is also applied to an aerobraking flight condition for the Mars Global Surveyor spacecraft with attitude control system jet interaction. Aerodynamic yawing moment coefficients for cases without and with jet interaction at various angles-of-attack were predicted, and results from the present method compare well with values published previously. The flow field and surface properties are analyzed in some detail to describe the mechanism by which the jet interaction affects the aerodynamics.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
TM 5-634
The United States Army Publishing Directorate is the Army's leader in publishing and delivering informational products worldwide. Their main mission is to supply official authenticated information to enhance the readiness of the total force. Some product topics include: Army Regulations, Engineering Technical Manuals, Administrative Publications, Circulars and Pamphlets. This is one of their documents.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Biomedical Signal Processing
This book presents the theoretical basis and applications of biomedical signal analysis and processing. This covers the nature of the most common biomedical signals followed by theoretical basis of linear signal processing and machine learning concepts, and pertinent applications.
Design Manual Onsite Wastewater Treatment and Disposal Systems
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Emergency Response to Hazardous Material Incidents
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Field Manual for Performance Evaluation and Troubleshooting at Municipal Wastewater Treatment Facilities
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Meeting U.S. Defense Needs in Space
U.S. defense industrial base (DIB) deterioration and increased DOD interest in space exploitation highlights the U.S. satellite industry as one DIB sector requiring analysis. Despite DIB problems, this industry must maintain the capability to produce advanced satellites for the DOD. Commercial-Military Integration (CMI) will, according to experts, eliminate problems inherent with a separate DIB. This research focused on investigating satellite industry capability to meet DOD space requirements. Through literature review, case study analysis and interviews, effects of a shrinking DIB on the satellite industry were determined. A model for DIB strength was developed and analyzed through literature review. General Electric Aircraft Engines (GEAE) case study showed the potential for commercializing the DIB. Research focused on satellite industry executives whose perspectives illustrated industry capability to meet defense space needs.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
An Investigation Into Robust Wind Correction Algorithms for Off-the-Shelf Unmanned Aerial Vehicle Autopilots
This research effort focuses on developing methods to design efficient wind correction algorithms to "piggy-back" on current off-the-shelf Unmanned Aerial Vehicle(UAV) autopilots. Autonomous flight is certainly the near future for the aerospaceindustry and there exists great interest in defining a system that can guide and controlsmall aircraft with high levels of accuracy. The primary systems required to command thevehicles are already in place, but with only moderate abilities to adjust for dynamicenvironments (i.e., wind effects), if at all. The goal of this research is to develop asystematic procedure for implementing efficient and robust wind effects corrections toexisting autopilots used on small Unmanned Aerial Vehicles. The research willinvestigate the feasibility of an external dynamic environment control algorithm as ameans of improving current, off-the-shelf autopilot technology relating to small UAVs.The research then presents three main focuses. First, a determination of the estimatedwinds utilizing the existing, on-board sensors. Second, the development of a windcorrection algorithm that incorporates simple mathematical principals to counter the 2-Dimensional wind forces acting on the aircraft; and third, the integration of that windcompensator into the on-board navigational system. This "piggy-back" algorithm mustassimilate smoothly with the current GPS technologies to provide acceptable and safeflight path following. The design procedures developed were demonstrated in simulationand with flight tests on the SIG Rascal 110 UAV. This report builds the framework fromwhich current wind correction research at AFIT and the ANT Center is based.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Integrating Automated Multi-Disciplinary Optimization in Preliminary Design of Non-Traditional Aircraft
Current methods of aircraft conceptual design lack the ability to quickly generate detailed analysis, particularly of nontraditional designs such as blended wing body craft. This study developed a method to resolve this problem by creating a flexible, parametrically driven conceptual model in an object-oriented, adaptive modeling environment from which analysis and optimization may rapidly be performed. These object-oriented techniques are incorporated into a traditional conceptual design process. All objects inherit dependency-tracking and demand-driven calculations. Design Analysis was performed within the modeling language and utilized interfaces to other software packages. A detailed mesh, suitable for input into finite element analysis programs, was developed from the less detailed, geometric mesh created by the modeling program. The output from finite element analysis forms the basis for rapid changes in subsequent iterations of the design process. The demonstration focuses on a single parametric design model which transforms a conventional transport design into a blended wing body design. This single design is controlled by a limited set of geometric variables and produces optimal structural weight estimations while the designer addresses volumetric and cost requirements.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The UAV Continuous Coverage Problem
The purpose of this research is to develop a method to find an optimal UAV cyclic schedule to provide maximum coverage over a target area to support an ISR mission. The goal is to reach continuous coverage. UAV continuous coverage of a target area is crucial for the success of an ISR mission. Even the smallest coverage gap may jeopardize the success of the mission. Ideally it is desirable to obtain continuous coverage of a target area but the stochastic nature of the problem makes continuous coverage without gaps unlikely. However, it is still possible to obtain a high coverage rate. Coverage gaps may occur at handoff from one UAV to another. We first study a deterministic model with identical UAVs and derive the minimum number of required UAVs to ensure continuous coverage. Continuous coverage is possible only in the deterministic setting. The model provides valuable insights on the parameters driving the UAV performance coverage. It is shown that the loitering and the roundtrip times are the most impacting parameters driving the performance coverage of the UAVs. It is proved that the number of UAVs is an increasing function of the roundtrip time and a decreasing function of the loitering time.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Assessment Methodology for the Environmental Impact of Water Resource Projects
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Costs of Arsenic Removal Technologies for Small Water Systems
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.