The Detection and Measurement of the Electrical Mobility Size Distributions Associated With Radon Decay Products
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
An Account of the Salt Springs at Salina
"An Account of the Salt Springs at Salina" by Lewis C. Beck offers a detailed historical and scientific examination of the salt springs located in Salina, New York. Published in 1826, this work provides valuable insights into the geological and chemical properties of these springs, as well as their economic and industrial significance in the early 19th century.Beck's account meticulously describes the process of salt production, the composition of the brine, and the surrounding geological formations. This book serves as a primary source for understanding the early industrial practices and scientific investigations related to natural resources in the United States. It is a must-read for historians, geologists, and anyone interested in the industrial history of New York.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Characterization of Neutron-Induced Defects in Isotopically Enriched Lithium Tetraborate
Lithium Tetraborate (LTB) is assessed for use as a material for neutron detection. LTB isotopically enriched in either Li-6 or B-10 provides a medium that efficiently captures and transmutes neutrons into more readily detected forms of material or energy. Neutron detection is desirable to detect elicit movement of special nuclear material or nuclear weapons. Single crystals of LTB, Li-6 or B-10 enriched, were neutron irradiated, and electron paramagnetic resonance was used to detect point defects induced by the neutrons. Multiple defects were noted in the irradiated crystals. Two particular defects, perturbed lithium vacancies and lithium clusters are proposed as induced by thermal neutrons. Parallel experiments on silver doped LTB indicated that fast neutrons induce interstitial defects including interstitial oxygen, lithium, and silver atoms in silver doped crystals. Electron paramagnetic resonance, electron-nuclear double resonance, pulsed anneal, and thermo luminescence studies prior to neutron irradiation concluded that silver doped LTB crystals contain silver point defects that trap both electrons and holes. Pulsed anneal and thermo luminescence studies of all crystal types prior to neutron irradiation suggest neutron induced defects are significantly more stable that as grown defects.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Electronic Structure of Diamond, Zincblende, and Chalcopyrite Semiconductors
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Application of KAM Theorem to Earth Orbiting Satellites
An orbit that lies on a Kolmogorov, Arnold, and Moser (KAM) Torus will remain on that torus until and unless it experiences a force that causes it to leave the torus. Earth satellites that are subject only to the Earth's gravity field may lie on such KAM tori. Analyzing on orbit satellite position data should allow for the identification of the fundamental frequencies needed to define the KAM tori for modeling Earth satellite orbits. KAM Tori are created for the Gravity Recovery and Climate Experience (GRACE) and Jason-1 satellites to model their orbital motion. Precise position data for the satellites is analyzed using a modified Laskar frequency algorithm to determine the fundamental frequencies of the orbits. The fundamental frequencies along with a set of Fourier coefficients completely describe the tori. These tori are then compared to the precise orbital position data for the satellites to determine how well they model the orbits. The KAM torus created for the Jason-1 satellite is able to represent the position of the satellites to within 1 km.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Anelastic Study of Divacancy Damping in Gold
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Nuclear Orientation Studies on Some High Spin Isomers in Ferromagnetic and Non-Ferromagetic Lattices
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
High-Frequency Stark Effect and its Application to Plasma Diagnostics
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube
The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources
The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Circular Magnetic X-Ray Dichroism in Rare Earth Compounds
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Parameter Studies for a Two-Component Fusion Experiment
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
To the Sun? a Journey Through Planetary Space
Embark on an extraordinary voyage through the solar system with "To the Sun? a Journey Through Planetary Space," a captivating work attributed to Jules Verne. First conceived in the 19th century, this work invites readers to explore the planets and celestial wonders through the eyes of visionary thinkers. This edition, translated by Edward Roth, captures the spirit of scientific curiosity and imaginative storytelling that defines the era. "To the Sun?" explores themes of scientific discovery, technological innovation, and the boundless human desire to explore the unknown. Experience the thrill of interplanetary travel and the allure of the cosmos in this pioneering work of science fiction that continues to inspire generations.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Vibrations, Their Principles; Light and Colors, Their Uses ..
"Vibrations, Their Principles; Light and Colors, Their Uses" explores the fundamental principles of vibrations, sound, light, and color, delving into their scientific underpinnings and practical applications. Written by Ernest Jack. Stevens, this volume provides a comprehensive overview of these interconnected phenomena, elucidating their properties and behaviors. From the physics of sound waves to the nature of light and the perception of color, the book offers insights into the physical world.Readers interested in the science of acoustics, optics, and the broader field of physics will find this an informative read. Its value lies in providing a detailed explanation of these principles and their practical use.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Time Dependent Discrete Ordinates Neutron Transport Using Distribution Iteration in XYZ Geometry
The DI algorithm is an alternative to source iteration that, in our testing, does not require an accelerator. I developed a formal verification plan and executed it to verify the results produced by my code that implemented DI with the above features. A new, matrix albedo, boundary condition treatment was developed and implemented so that infinite-medium benchmarks could be included in the verification test suite. The DI algorithm was modified for parallel efficiency and the prior instability of the refinement sweep was corrected. The testing revealed that DI performed as well or faster than source iteration with DSA and that DI continued to work where DSA failed. Performance did degrade when the diamond-difference (without fixup) spatial quadrature was used. Because diamond-difference is a non-positive spatial quadrature, it can produce nonphysical negative fluxes, particularly in higher dimensions. I developed a new fixup scheme to accommodate the negative fluxes, but it did not improve performance in XYZ geometry when the scattering ratio was near unity.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Stability Domains in Nonlinear Point Reactor Dynamics
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Radiation Damage From Internal Alpha Decay in Thorium
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Cross Section Measurement of Charm Hyperons In 250 GeV p/K Nucleon Interactions
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Mossbauer Studies of the Transition Element Halides
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Isotope Separation by Laser Deflection of an Atomic Beam
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Compton Scatter Camera for Spectral Imaging of 0.5 to 3.0 MeV Gamma Rays
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
On the Galactic System With Regard to Its Structure, Origin, and Relations in Space
"On the Galactic System With Regard to Its Structure, Origin, and Relations in Space" presents a detailed exploration of early 20th-century understanding of our galaxy. Written by Karl Petrus Teodor Bohlin, this work delves into the then-current theories and observations regarding the Milky Way's form, genesis, and position within the broader cosmos.Bohlin's study offers insights into the astronomical thought of his time, making it a valuable resource for historians of science and anyone interested in the evolution of our comprehension of the universe. While some concepts may be outdated by modern discoveries, this book serves as a crucial snapshot of the scientific landscape at the dawn of modern astrophysics. It showcases the foundations upon which later discoveries were built, providing context to our contemporary understanding of galactic structures and cosmic relationships.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Laboratory Course in Experimental Physics
"A Laboratory Course in Experimental Physics" offers a detailed guide to conducting physics experiments, reflecting the state of scientific education in the late 19th century. Authored by W. J. Loudon and J. C. McLennan, this book provides a structured approach to learning through hands-on experimentation. Designed for use in a laboratory setting, the course outlines various experiments covering fundamental principles of physics. Students are guided through the process of setting up equipment, taking measurements, and analyzing results. This hands-on approach aims to deepen understanding and reinforce theoretical knowledge. Originally published in 1895, this work offers a valuable glimpse into the history of physics education and the methods used to train aspiring scientists during that era. It remains relevant for those interested in historical scientific practices and the evolution of physics instruction.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Fourier Transform Photoelectron Diffraction and its Application to Molecular Orbitals and Surface Structure
The Office of Scientific & Technical Information (OSTI), is a part of the U.S. Department of Energy (DOE) that houses research and development results from projects funded by the DOE. The information is generally an article, technical document, conference paper or dissertation. This is one of those publications.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Practical Measurements in Radioactivity
Practical Measurements in Radioactivity, by Walter Makower, offers a detailed examination of the methods and techniques used to measure radioactivity in the early 20th century. This comprehensive guide provides practical insights into the instruments and procedures employed to quantify radioactive substances, making it an invaluable resource for students, researchers, and professionals in the field. The book covers a range of topics, including ionization methods, the use of electroscopes, and the determination of radioactive decay rates. Makower's work is characterized by its clear explanations and meticulous attention to detail, ensuring that readers gain a solid understanding of the principles underlying radioactivity measurements. While reflecting the scientific understanding of its time, this book remains a significant historical document, offering a glimpse into the pioneering efforts to understand and quantify the phenomenon of radioactivity. A crucial addition to any collection focusing on the history of science and technology.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Practical Astronomy With the Unaided Eye
"Practical Astronomy With the Unaided Eye" offers a comprehensive introduction to the wonders of the night sky, accessible to anyone with an interest in astronomy. Written by Hector Macpherson, this timeless guide provides readers with the knowledge to identify constellations, planets, and other celestial phenomena without the need for telescopes or other equipment. Macpherson's clear and engaging style makes complex concepts easy to understand, offering practical advice on how to observe the sky effectively. Whether you are a beginner or an experienced stargazer, this book will enhance your appreciation of the universe. Discover the joy of exploring the cosmos with just your eyes and this insightful guide.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The World of Comets
Explore the wonders of the cosmos with "The World of Comets" by Am矇d矇e Guillemin. Originally published in 1877, this volume offers a fascinating glimpse into the 19th-century understanding of comets, their nature, and their place in the solar system. Guillemin's work provides a detailed account of these celestial wanderers, blending scientific observation with accessible prose. This book is a valuable resource for anyone interested in the history of astronomy, offering insights into the evolution of scientific thought and the enduring allure of comets. Delve into the historical perspective on these mesmerizing objects and discover the captivating world of cometary science as it was understood over a century ago.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Flowers of the Sky
"Flowers of the Sky" by Richard A. Proctor, originally published in 1879, offers a fascinating glimpse into the popular understanding of astronomy during the late 19th century. Proctor, a renowned astronomer and science communicator, explores the wonders of the celestial sphere, detailing constellations, nebulae, and other astronomical phenomena in a clear and engaging style. This work showcases the knowledge and appreciation of the night sky as it was understood at the time, providing both a historical record of scientific thought and an accessible introduction to the beauty of the universe. A valuable read for anyone interested in the history of science and the enduring appeal of astronomy.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Determination of the Parallaxes of Fifty Stars
"Determination of the Parallaxes of Fifty Stars" presents the results of astronomical observations and calculations to determine the distances of fifty stars using the parallax method. This meticulous work, originally published in 1910, contributes valuable data to the field of astrometry and provides insights into the scale and structure of the universe as it was understood at the time. The study involves precise measurements and mathematical analysis, showcasing the scientific rigor of early 20th-century astronomical research. This book is a key resource for historians of science, astronomers, and anyone interested in the development of our understanding of stellar distances. The careful methodology and detailed results offer a glimpse into the challenges and achievements of early parallax determination, which remains a cornerstone of modern astrophysics.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
An Investigation of Shock Wave Physics via Hybrid CFD-BGK Solution Methods for Nonequilibrium Flows
The Unified Flow Solver, a hybrid continuum-rarefied code, is used to investigate the internal structure of a normal shock wave for a Mach range of 1.55 to 9.0 for Argon, and 1.53 to 3.8 for diatomic Nitrogen. Reciprocal shock thickness, density, temperature, heat flux, and the velocity distribution function are calculated for a one-dimensional shock wave and compared with experimental data from Alsmeyer and DSMC results from Bird. Using the Euler, Navier-Stokes, BGK model, and Three-Temperature BGK model schemes, results from UFS compare well with experiment and DSMC. The Euler scheme shows atypical results, possibly resulting from modifications made to include internal energies. An entropy spot is introduced into a two-dimensional domain to investigate entropy-shock interactions over a range of Knudsen numbers (Kn=0.01, 0.1, and 1.0) for Mach 2.0 in Argon. Previous work on entropy-shock interactions has only been performed using an Euler scheme. Here, results are presented in Argon using coupled BGK and Navier-Stokes solvers. Density, pressure, and temperature profiles, as well as the profiles of their gradients, are reported at certain times after the entropy spot convects through the shock.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Hand-book, Describing Objects In The "telescopic Pictures Of The Moon"
"A Hand-book, Describing Objects In The \"telescopic Pictures Of The Moon\"" offers a detailed guide to lunar observation. This handbook serves as an atlas for stargazers, carefully describing the various features visible through telescopes on the moon's surface. Intended for both amateur and seasoned astronomers, it enhances the viewing experience by providing context and information about the formations, craters, and other notable objects. This book combines scientific accuracy with an accessible format, making it a valuable resource for anyone interested in exploring the celestial wonders of our nearest neighbor in space.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Neutron Detection Utilizing Gadolinium Doped Hafnium Oxide Films
Gadolinium (Gd) doped hafnium oxide (HfO2) was deposited onto a silicon substrate using pulsed laser deposition. Synchrotron radiation was used to perform Gd L3-edge extended X-ray absorption fine structure (EXAFS) measurements on 3%, 10%, and 15% doped HfO2 samples. The interatomic distances determined from Fourier transformation and fitting the data show Gd occupying the hafnium site in the HfO2 lattice, there was no clustering of Gd atoms, and the Gd ion retains monoclinic local symmetery for all levels of doping. Current as a function of voltage experiments identified the films as having poor diode characteristics with high leakage current in the forward bias region. However, a proper bias (0.5 V) for the purpose of neutron detection was identified and applied across the diodes. Using a high, non-varying neutron flux in a nuclear reactor, Gd doped HfO2 was able to be used in a detection system and displayed the ability to detect neutrons.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The Effects Of Temperature And Of Circular Magnetization On Longitudinally Magnetized Iron Wire
"The Effects Of Temperature And Of Circular Magnetization On Longitudinally Magnetized Iron Wire" explores the intricate relationship between temperature, circular magnetization, and the magnetic properties of iron wire. This study delves into experimental investigations conducted by Frank Henry Pitcher, offering valuable insights into the behavior of magnetized materials under varying conditions.Readers interested in physics, materials science, and the fundamentals of magnetism will find this work to be a useful resource. The book details the experimental setup, methodologies, and observations made during the research. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Nuclear Weapon Yield Determination Through Nano Indentation of Thermally Degraded Automobile Paint
This work investigated the suitability of automotive clearcoat as a nuclear weapon yield sensor, using the change in elastic modulus as the primary metric. The AFIT Xenon Thermal Simulator (AXTS) was used to simulate a nuclear thermal pulse. The elastic modulus of the clearcoat was measured using a nano indenter. During this research the power density of the AXTS beam was increased from 44.7 to 63.7 W/cm2. The morphological steps through which automobile paint proceeds as it thermally degrades were identified and correlated with temperatures. A computer model was created and used to ensure that the paint's time-temperature response to the AXTS pulse was comparable to that of a replicate nuclear thermal pulse. Clearcoat's physical properties exhibit a low sensitivity to incident thermal energy. Variability among these properties remains essentially unchanged by exposure to the thermal pulse. A weak correlation between change in elastic modulus and exposure time was identified. A similarly weak correlation between exposure time and each of load on sample, harmonic stiffness, and hardness was also identified. It was concluded that these correlation were too weak to be used for post-detonation forensics.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Improved Collision Modeling for Direct Simulation Monte Carlo Methods
In the Smoothed Accept/Reject (SAR) algorithm, the accept/reject criteria is altered from Direct Simulation Monte Carlo (DSMC): rather than a binary function of rejection or acceptance, collisions can be partially accepted with a linear weighting between zero and one. The partial acceptance is based on a band around the original accept/reject criteria defined as a percentage of the collision criteria, which is called . A relationship previously noted between Mach and is explored. Velocity distributions of the particles are examined for all algorithms and compared to experimental data to determine the effect of the SAR algorithm at a microscopic level. All of the comparisons to experiment show a Mach dependency that has previously been noted, and the dependency was defined for the normal shock simulations. DSMC does adequately simulate the nonequilibrium within the cells at a high Mach number through the shock, but SAR does. The SAR algorithm models the flowfield in the shock better than DSMC through a change in the collision rate and particle sampling methods, which allows for a more accurate simulation.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Quantitative Object Reconstruction Using Abel Transform Tomography and Mixed Variable Optimization
Researchers at the Los Alamos National Laboratory (LANL) are interested in quantitatively reconstructing an object using Abel transform x-ray tomography. Specifically, they obtain a radiograph by x-raying an object and attempt to quantitatively determine the number and types of materials and the thicknesses of each material layer. Their current methodologies either fail to provide a quantitative description of the object or are generally too slow to be useful in practice. As an alternative, the problem is modeled here as a mixed variable programming (MVP) problem, in which some variables are nonnumeric and for which no derivative information is available. The generalized pattern search (GPS) algorithm for linearly constrained MVP problems is applied to the x-ray tomography problem, by means of the NOMADm MATLABr software package. Numerical results are provided for several test configurations of cylindrically symmetrical objects and show that, while there are difficulties to be overcome by researchers at LANL, this method is promising for solving x-ray tomography object reconstruction problems in practice.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Investigation of YAG
The properties of thin, cerium activated, yttrium aluminum garnet (YAG: Ce), scintillating fiber-shaped crystals were investigated for particle tracking and calorimetric applications such as Compton imaging of Special Nuclear Material from remote platforms at standoff ranges. Silicon photomultipliers (SiPMs) are relatively new, efficient, single photon sensitive, solid-state photodiode arrays which are well suited for the readout of scintillating fibers. Using SiPMs, the scintillation decay time profiles of six 400 m YAG: Ce fiber crystals were measured under alpha and gamma irradiation. Interestingly, the observed decay times in the thin fibers were substantially slower than values for bulk single crystal YAG: Ce reported in open scientific literature; possible explanations are explored. Both laser induced photoluminescence and alpha scintillation measurements were conducted to estimate the effective attenuation length of the YAG: Ce fibers. Using the measured attenuation lengths, position-of-interaction measurements were conducted to determine the achievable position resolution in YAG: Ce fibers using dual fiber end SiPM readouts. The measured results are compared to theoretical calculations and Monte Carlo simulations. Finally, improvements to the detector concept, including a formula to determine the best SiPM model based on device parameters and the Birks' figure of merit of the scintillating material, are presented.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Multi-Dimensional Wave Front Sensing Algorithms for Embedded Tracking and Adaptive Optics Applications
Current tracking and adaptive optics techniques cannot compensate for fastmoving extended objects, which is important for ground-based telescopes providing space situational awareness. To fill this need, a vector-projection maximum-likelihood wave-front sensing algorithm development and testing follows for this application. A derivation and simplification of the Cramer-Rao Lower Bound for wave-front sensing using a laser guide star bounds the performance of these systems and guides implementation of a vastly optimized maximum-likelihood search algorithm. A complete analysis of the bias, mean square error, and variance of the algorithm demonstrates exceptional performance of the new sensor. A proof of concept implementation shows feasibility of deployment in modern adaptive optics systems. The vector-projection maximum-likelihood sensor satisfies the need for tracking and wave-front sensing of extended objects using current adaptive optics hardware designs.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Distribution Iteration
The discrete ordinates method is widely used to solve the Boltzmann transport equation for neutral particle transport for many engineering applications. Source iteration is used to solve the discrete ordinates system of equations, but can be slow to converge in highly scattering problems. Synthetic acceleration techniques have been developed to address this shortcoming; however, recent research has shown synthetic acceleration to lose effectiveness or diverge for certain problems. LTC Wager introduced an alternative to source iteration and demonstrated it in slab geometry. Here the method is further developed, enhancing efficiency in various ways, and demonstrated in XY-geometry as well as slab geometry. It is shown to be efficient even for those problems for which diffusion-synthetic and transport-synthetic accelerations fail or are ineffective. The method has significant advantages for massively-parallel implementations.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Numerical Solutions to the Two Dimensional Boltzmann Equation
A strict kinetic, two-dimensional model of the electron kinetics within a glow discharge positive column is developed. The problem is solved in cylindrical geometry using the standard two-term Legendre expansion of the electron velocity distribution function. The model establishes a steady state solution, such that the net ionization rate is exactly balanced by the wall loss. In addition to a thorough analytic development, we present the numerical techniques used to solve the resulting elliptic partial differential equation, including an efficient method to treat sparse banded matrices. The model is validated against published results, local and nonlocal kinetic approximations, and a previous Monte Carlo treatment. Having created a working model, we conduct an investigation into current flow within the solution area of a neon column, made possible by this 2-D treatment. Furthermore, we investigate the range of applicability of the earlier local and nonlocal kinetic approximations and finally present a short discussion on the effect different forms of wall loss have on the overall distribution function.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Investigation of YAG
The properties of thin, cerium activated, yttrium aluminum garnet (YAG: Ce), scintillating fiber-shaped crystals were investigated for particle tracking and calorimetric applications such as Compton imaging of Special Nuclear Material from remote platforms at standoff ranges. Silicon photomultipliers (SiPMs) are relatively new, efficient, single photon sensitive, solid-state photodiode arrays which are well suited for the readout of scintillating fibers. Using SiPMs, the scintillation decay time profiles of six 400 m YAG: Ce fiber crystals were measured under alpha and gamma irradiation. Interestingly, the observed decay times in the thin fibers were substantially slower than values for bulk single crystal YAG: Ce reported in open scientific literature; possible explanations are explored. Both laser induced photoluminescence and alpha scintillation measurements were conducted to estimate the effective attenuation length of the YAG: Ce fibers. Using the measured attenuation lengths, position-of-interaction measurements were conducted to determine the achievable position resolution in YAG: Ce fibers using dual fiber end SiPM readouts. The measured results are compared to theoretical calculations and Monte Carlo simulations. Finally, improvements to the detector concept, including a formula to determine the best SiPM model based on device parameters and the Birks' figure of merit of the scintillating material, are presented.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Nuclear Forensics
Over the past decade, law enforcement, governmental and public agencies have been stymied by the threat of the trafficking of nuclear materials. During this time span, reports from the International Atomic Energy Agency of illicit trafficking have increased eightfold from 20 to 160. For this reason, nuclear forensics is a burgeoning science focused on the identification of seized special nuclear materials. Identification of these materials is based upon the wealth of information that can be obtained by applying multiple analytical and measurement technologies. All of the information gained from each sample can then be used to further characterize other samples culminating in the inclusion of all of the collected data into a central database. Information must be reported in a timely manner as actionable results need to be presented as quickly as possible if there is to be any attribution for trafficking of nuclear material. Identification parameters such as uranium content, isotopic composition, and levels of impurities can be measured simultaneously in an effort to completely characterize a sample. All of these measurements combined can offer information as to the source of the material and its intended use. Many of the current analytical techniques used in nuclear forensics require extensive sample preparation and offer minimal amounts of information about the sample. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) is presented as a rapid analytical technique that provides many of these identification parameters with minimal sample preparation. TOF-SIMS spectra were collected on eight different standard reference materials covering a range of stoichiometries and levels of enrichment. Samples included UO2, UO3 and U3O8 stoichiometries ranging from slightly depleted (0.5% 235U) to highly enriched (90.0% 235U) uranium. Spectra were simulated in an effort to deconvolve composite peaks resulting from the protonation of cluster ions.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Efficient and Accurate Computation of Non-Negative Anisotropic Group Scattering Cross Sections for Discrete Ordinates and Monte Carlo Radiaton Transport
A new method for approximating anisotropic, multi-group scatter cross sections for use in discretized and Monte Carlo multi-group neutron transport is presented. The new method eliminates unphysical artifacts such as negative group scatter cross sections and falsely positive cross sections. Additionally, when combined with the discrete elements angular quadrature method, the new cross sections eliminate the lack of angular support in the discrete ordinates quadrature method. The new method generates piecewise-average group-to-group scatter cross sections. The accuracy and efficiency for calculating the discrete elements cross sections has improved by many orders of magnitude compared to DelGrande and Mathews (7) previous implementation. The new cross sections have extended the discrete elements method to all neutron-producing representations in the Evaluated Nuclear Data Files (13). The new cross section method has been validated and tested with the cross section generation code, NJOY (13). Results of transport calculations using discrete elements, discrete ordinates, and Monte Carlo methods for two, one-dimensional slab geometry problems are compared.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Distribution Iteration
The discrete ordinates method is widely used to solve the Boltzmann transport equation for neutral particle transport for many engineering applications. Source iteration is used to solve the discrete ordinates system of equations, but can be slow to converge in highly scattering problems. Synthetic acceleration techniques have been developed to address this shortcoming; however, recent research has shown synthetic acceleration to lose effectiveness or diverge for certain problems. LTC Wager introduced an alternative to source iteration and demonstrated it in slab geometry. Here the method is further developed, enhancing efficiency in various ways, and demonstrated in XY-geometry as well as slab geometry. It is shown to be efficient even for those problems for which diffusion-synthetic and transport-synthetic accelerations fail or are ineffective. The method has significant advantages for massively-parallel implementations.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Multi-Dimensional Wave Front Sensing Algorithms for Embedded Tracking and Adaptive Optics Applications
Current tracking and adaptive optics techniques cannot compensate for fastmoving extended objects, which is important for ground-based telescopes providing space situational awareness. To fill this need, a vector-projection maximum-likelihood wave-front sensing algorithm development and testing follows for this application. A derivation and simplification of the Cramer-Rao Lower Bound for wave-front sensing using a laser guide star bounds the performance of these systems and guides implementation of a vastly optimized maximum-likelihood search algorithm. A complete analysis of the bias, mean square error, and variance of the algorithm demonstrates exceptional performance of the new sensor. A proof of concept implementation shows feasibility of deployment in modern adaptive optics systems. The vector-projection maximum-likelihood sensor satisfies the need for tracking and wave-front sensing of extended objects using current adaptive optics hardware designs.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Daytime Detection of Space Objects
Space Situational Awareness (SSA) requires repeated object updates for orbit accuracy. Detection of unknown objects is critical. A daytime model was developed that evaluated sun flares and assessed thermal emissions from space objects. Iridium satellites generate predictable sun glints. These were used as a model baseline for daytime detections. Flares and space object thermal emissions were examined for daytime detection. A variety of geometric, material and atmospheric characteristics affected this daytime detection capability. In a photon noise limited mode, simulated Iridium flares were detected. The peak Signalto- Noise Ratios (SNR) were 6.05e18, 9.63e5, and 1.65e7 for the nighttime, daytime and infrared flares respectively. The thermal emission of space objects at 353K, 900K and 1300K with 2 to 20 m2 emitting areas were evaluated. The peak emission was for the 20 m2 900K object with an SNR of 1.08e10.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Short and Independent Characteristic Methods for Discrete Ordinates Radiation Transport With 2D and 3D Regular Cartesian Meshes
Accurate, reliable, and robust discrete neutral particle radiation transport codes are needed in order to perform realistic 3D engineering calculations. Current neutron transport codes use low order spatial quadratures that are inaccurate unless a highly refined spatial mesh is used. In this work various higher order characteristic spatial quadratures are derived, implemented, and tested. Regular meshes of rectangular (2D) and of rectangular parallelepiped (boxoid) cells are supported. Short characteristic (linear characteristic [LC] and exponential characteristic [EC]) methods are compared with the corresponding independent characteristic (ILC and IEC) methods. The latter readily provide for plane-parallel implementation. All transport results were benchmarked against Monte Carlo calculations. The diamond difference (DD) method was also tested and compared to the characteristic spatial quadratures. IEC and EC were found to be robust, reliable, and accurate for thin, intermediate, and optically thick cells. LC was robust, reliable, and accurate for cells of thin to intermediate (approximately 2 mean free paths) optical thickness. ILC was not pursued in 3D due to its anticipated excessive computational cost. DD was unreliable (as expected) over the range of test problems. We conclude that IEC and EC are apt methods for a wide range of problems, and provide the ability to perform realistic engineering calculations on coarse cells given nonnegative group-to-group, ordinate-to-ordinate cross section data.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Computational Modeling of a Time-independent, Heterogeneous Reactor Core Using Simplified Discrete Ordinates Neutron Transport Techniques
A three-dimensional neutron transport based, heterogeneous reactor code (3D-TRAN) was developed to model simple uniform isotropic sources and isotropic fission sources. The code was developed using level symmetric angular quadrature sets and three spatial quadratures: the Diamond Difference (DD), Step, and Linear Characteristic (LC) methods. Each method was analyzed and compared for accuracy, rate of convergence, and stability. The LC method was found to be the most accurate method with a broader range of stability through heterogeneous absorbing regions than the DD method. The Step method always remains positive and stable, but converges very slowly to a specified answer in the limit as the mesh is refined.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.