Engineering Handbook for Hazardous Waste Incineration
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Brownfields Technology Primer Selecting and Using Phytoremediation for Site Cleanup
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Wind Tunnel Analysis and Flight Test of a Wing Fence on a T-38
A low-speed wind tunnel study and flight tests were performed to examine the effects of a wing fence on the T-38A. Wind tunnel results were based upon force and moment data collected with a six-component balance and flow visualization at Reynolds numbers up to 0.3 x 106, based on mean aerodynamic chord. The model did not include the last 7.79 feet of the aircraft, and the engine and exhaust were modeled as through-holes. Five fence geometries, placed at wing station 125 ( 0.825 semispan), were compared. The best performer of these designs, based on drag polar, was the fence that wrapped the leading edge and extended 84.6 percent of the local chord length along the wing's upper surface. Wind tunnel data showed that this fence increased the lift coefficient by up to 6.3 0.6 percent and reduced spanwise and separated flow outboard the fence. The flight-tested fence was based on the best performing fence design from the wind tunnel study. The results were based on aircraft instrumentation and flow visualization at Reynolds numbers up to 9.98 x 106. It was inconclusive whether the fence caused an increase in lift coefficient. The fence reduced the roll-off tendency and wing rock during approaches to stall. Tuft visualization on the aircraft wing suggested that the fence reduced spanwise and separated flow outboard the fence, which agreed with the wind tunnel results.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Multimission Aircraft Design Study
In the most recent years, the Command, Control and Communications, Counter Measures, Intelligence, Surveillance and Reconnaissance (C3CMISR) aircrafts are used commonly in many NATO and UN Operations around the world. These aircrafts are AWACS, JSTARS, Rivet Joint, Compass Call and ABCCC. They provide close air support in the name of airborne surveillance, ground moving target surveillance, target reconnaissance, jamming, and command, control and communications issues in operational environments. Those aircrafts are tasked with a wide variety of missions than ever before in operational theaters and each one of them comprises a specific amount of cost and risk factors. As a new vision, while replacing the existing legacy systems, multi-mission architectures are taken into consideration for the C3CMISR missions. The stated objective is designing a one tail number Multi-Mission Aircraft (MMA) that includes all the C3CMISR tasks on one airframe. This study seeks some comments and advises about the MMA design technical feasibility. In order to search for these comments, four notional operational scenarios are created. First of all existing C3CMISR aircrafts are considered and evaluated in these operational scenarios and then different MMA architectures are defined and compared with the legacy systems in the name of adequacy.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Handling Qualities Evaluation of a Supersonic Tailless Air Vehicle
This thesis presents the results of a handling qualities evaluation of a supersonic tailless air vehicle. The 2006 Quadrennial Defense Review mandated the need for the next generation of long-range strike aircraft by 2018. Due to speed and stealth requirements, this resulted in a tailless aircraft with an instantaneous center of rotation located well forward of that of a conventional aircraft. This thesis examines how this center of rotation affected pilot handling qualities ratings. This effect should have been the most pronounced during approach and landing, and was where the testing focused. The goal of this research was to develop a systematic procedure for evaluating the handling qualities of this aircraft, and to determine how different pilot flying techniques or pilot-inceptor interactions influenced them. This procedure was demonstrated in simulator testing and in flight testing on the Calspan-operated Total In-Flight Simulator aircraft.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Performance Characterization of a Novel Plasma Thruster to Provide a Revolutionary Operationally Responsive Space Capability With Micro- and Nano-Satellites
Few options currently exist to provide propulsion for extremely small satellites due to design constraints on power, volume, and weight. However, future operation will require a capability to conduct orbital maneuvers, momentum dumping, and precision pointing for these low cost satellites. The research presented here represents the first effort to operate and quantify the performance of a new micro plasma thruster design which provides a novel solution to these disparate competing constraints. The thruster in this study represents a deviation from traditional circular Hall thruster design practices, because it eschews a central magnetic circuit, which results in nearly parallel electric and magnetic field lines within the thruster discharge channel. This design decision reduces thruster complexity and thermal susceptibility, but it also reduces the ionization efficiency. The cornerstone of this study involved the direct measurement of thrust in order to quantify the efficiency and specific impulse of this innovative thruster. The investigation also included characterization of the thruster exhaust plume, voltage-current characteristics, and operating limits. Results are enumerated and suggestions for improvement provided.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Satellite Capabilities Mapping
The cost and schedule advantages small satellites have over larger legacy systems have been studied, but there has been very little experimentation performed to determine whether small satellites can actually deliver the capabilities of larger spacecraft. To date, a desired operational capability has not been fully realized by a scalable satellite design. Advances in sensor technology have led to significant reductions in size, weight, and power (SWaP) presenting an opportunity to exploit the evolution of space operations by using small satellites to perform specific missions. This paper describes a methodology that maps a specific set of large space vehicle capabilities to CubeSats. The process examines the utility of advanced sensors.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Small Internal Combustion Engine Testing for a Hybrid-Electric Remotely-Piloted Aircraft
Efficient operation of a hybrid-electric propulsion system (HEPS) powering a small remotely-piloted aircraft (RPA) requires that a controller have accurate and detailed engine and electric motor performance data. Many small internal combustion engines (ICEs) currently used on various small RPA were designed for use by the recreational hobbyist radio-control (R/C) aircraft market. Often, the manufacturers of these engines do not make accurate and reliable detailed engine performance data available for their engines. A dynamometer testing stand was assembled to test various small ICEs. These engines were tested with automotive unleaded gasoline (the manufacturer's recommended fuel) using the dynamometer setup. Torque, engine speed and fuel flow measurements were taken at varying load and throttle settings. Power and specific fuel consumption (SFC) data were calculated from these measurements. Engine performance maps were generated in which contours of SFC were mapped on a mean effective pressure (MEP) versus engine speed plot. These performance maps are to be utilized for performance testing of the controller and integrated HEPS in further research.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Experimental Methods to Characterize Nonlinear Vibration of Flapping Wing Micro Air Vehicles
For urban combat reconnaissance, the flapping wing micro air vehicle concept is ideal because of its low speed and miniature size, which are both conducive to indoor operations. The focus of this research is the development of experimental methods best suited for the vibration testing of the wing structure of a flapping wing micro air vehicle. This study utilizes the similarity of a beam resonating at its first bending mode to actual wing flapping motion. While computational finite element analysis based on linear vibration theory is employed for preliminary beam sizing, an emphasis is placed on experimental measurement of the nonlinear vibration characteristics introduced as a result of large movement. Beam specimens fabricated from 2024-T3 aluminum alloy and IM7/5250-4 carbon epoxy were examined using a high speed optical system and a scanning laser vibrometer configured in both three and one dimensions, respectively.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Nonlinear Pre-Filter to Prevent Departure And/or Pilot-Induced Oscillations Due to Actuator Rate Limiting
Closed loop instability caused by excess phase lag induced by actuator rate limiting has been suspected in many aircraft departures from controlled flight and pilot-induced oscillations (PIO). As part of the joint Air Force Institute of Technology/Test Pilot School (AFIT/TPS) program, a nonlinear rate limiter pre-filter (RLPF) was developed to minimize the phase lag induced by rate limiting. RLPF performance was evaluated inside the feedback path, but primary emphasis was on the pilot command path. Closed loop computer and motion-based flight simulations were conducted to prepare for the flight test. The HAVE FILTER flight test project was flown using the NF-16D Variable Stability In-flight Simulator Test Aircraft (VISTA) aircraft and evaluated using a software rate limit (SWRL) with and without an RLPF on the pilot command path. A programmable heads-up-display (HUD) was used to generate a fighter tracking task. Flight test results showed the SWRL was useful in preventing departure and/or PIO.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The Need for Speed
Transformation to the next level of technology is a pressing issue for the Air Force's strategic planers. Just how much of a leap in technology do engineers try to take when designing a new system? The answer depends if new discoveries have increased the technology available when they design a new system. However, it makes little sense to build new equipment that does not provide an improved capability or a more reliable system. That being said, the next long-range strike platform could take that technological leap and be a very fast near-space vehicle. Past events, such as the 2004 X-43 launch, show that technological progress is occurring on critical hypersonic components. While this is not a paper on the technology per se, it covers the implications of building and operating a "hypersonic" bomber force. This paper addresses the question of whether or not the hypersonic bomber is worth the required investment and covers several aspects involved with hypersonic bomber operations.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Satellite-Based Fusion of Image/Inertial Sensors for Precise Geolocation
The ability to produce high-resolution images of the Earth's surface from space has flourished in recent years with the continuous development and improvement of satellite-based imaging sensors. Earth-imaging satellites often rely on complex onboard navigation systems, with dependence on Global Positioning System (GPS) tracking and/or continuous post-capture georegistration, to accurately geolocate ground targets of interest to either commercial and military customers. Consequently, these satellite systems are often massive, expensive, and susceptible to poor or unavailable target tracking capabilities in GPS-denied environments. Previous research has demonstrated that a tightlycoupled image-aided inertial navigation system (INS), using existing onboard imaging sensors, can provide significant target tracking improvement over that of conventional navigation and tracking systems. Satellite-based image-aided navigation is explored as a means of autonomously tracking stationary ground targets by implementing feature detection and recognition algorithms to accurately predict a ground target's pixel location within subsequent satellite images. The development of a robust satellite-based image-aided INS model offers a convenient, low-cost, low-weight and highly accurate solution to the geolocation precision problem, without the need of human interaction or GPS dependency, while simultaneously providing redundant and sustainable satellite navigation capabilities.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Robust Rotorcraft Flight Control System Design Methodology Utilizing Quantitative Feedback Theory
Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Thermal Characterization of a Hall Effect Thruster
The thermal characteristics of a Hall thruster directly influence thruster and spacecraft design. High temperatures affect the magnetic coil capabilities and cause higher insulator erosion rates, influencing both thruster performance and lifetime. The Hall thruster transfers heat through both radiation and conduction, and the spacecraft must handle this additional thermal energy. An infrared camera provides a non-intrusive method to analyze the thermal characteristics of an operational Hall thruster. This thesis contains the thermal analysis of a Busek Co. Inc. 200 W Hall thruster, using a FLIR ThermaCAM SC640 infrared camera. The Space Propulsion Analysis and System Simulator Laboratory at the Air Force Institute of Technology on Wright-Patterson Air Force Base provided the location for thruster set up and operation. The infrared camera furnishes the surface temperatures for the entire thruster, and approximates the transient heating behavior during start up, steady state, and shut down. Thermocouples verify and correct the camera data. Experimentally determined emissivities characterize the materials of the thruster. In addition, a view factor analysis between the camera pixels and the alumina sprayed portion of the cathode determines the exchange of radiation between the pixels and cathode surface. This process develops a technique to map surface temperatures of complex geometries with confidence in the actual values. Accurately mapping the surface temperatures of a Hall Effect thruster will improve both thruster efficiency and lifetime, and predict the thruster's thermal load on a satellite.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
USAF Pilot Perceptions of Workload Assessment in a Combat or High-Threat Environment
This study analyzed the self-reported survey responses of 219 Air Force Pilots concerning their perceptions of workload assessment in a combat or a high-threat environment. The first objective of this study was to determine and compare the combat workload factors of varying importance in combat workload assessment by aircraft and mission type flown. The second objective was to examine the pilots' perception of combat mission in-flight workload. A stepwise regression model to predict the pilots' perceptions of in-flight workload using pilots' characteristic data was explored. Research conclusion varied among aircraft types. Combat workload items indicated, as "distractingly" important were similar for all aircraft types, while items in lower level of importance were impacted by aircraft type. Mean Combat Workload (CWL) scores of pilots from each aircraft type were not significantly different. Overall, it was concluded that surveying pilots who had flown in combat or high-threat environments provided useful responses to assess pilot workload; however, findings based on subjective assessments, provide tentative grounds for further research.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Autonomous Air Refueling for Unmanned Aircraft Systems
Air Refueling (AR) demonstrates its critical importance on a daily basis in combat and peacetime missions all over the world. It is a crucial link enabling the global reach the US Air Force needs to fly, fight and win the current Global War on Terrorism (GWOT) and conduct various other missions in support of the US Military Strategy. Despite its critical importance to airpower, AR technology has changed little in the last 50 years. The Air Force uses the same basic refueling systems designed for Strategic Air Command (SAC) over a half-century ago. These systems require a heavy workload by the receiver pilot either maintaining position in a tight refueling envelope for the Boom System or actually making and maintaining a contact with the Probe and Drogue System. With unmanned platforms playing a larger role in the Intelligence, Surveillance and Reconnaissance (ISR) role and envisioned to one day replace the manned fighter, a system which can accomplish air refueling autonomously is being sought to enable the next generation of combat and ISR aircraft to safely conduct AR. The purpose of this research is to accomplish a cost/benefit analysis of air refueling Unmanned Aircraft Systems (UAS) used as ISR platforms, specifically high altitude endurance (HAE) class UAS such as the Global Hawk. Currently two different AAR systems are being developed and tested independently by the Air Force Research Lab (AFRL) and the Defense Advanced Research Projects Agency (DARPA) in conjunction with the Sierra Nevada Corporation. This research is not intended to determine the superiority of one system over the other however; it is only intended to weigh the benefits and costs of the AAR concept as a whole.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Design of a Space-Borne Autonomous Infrared Tracking System
Complete characterization of the space environment in support of the United States' goal of Space Situational Awareness is not currently achievable. When confronted with recent increases in the deployment and miniaturization of microsatellites by numerous nations, the questions of foreign space capabilities are magnified. This study sought to determine the feasibility of and experimentally demonstrate a microsatellite capability to autonomously loiter about and track a target satellite. Various methods of passive remote sensing were investigated to determine the best means of detecting and tracking a target in space. Microbolometer-based infrared sensors were identified as the best sensor for several reasons, primarily due to their ability to track in the absence of light. A representative system was constructed for demonstration in AFIT's SIMSAT laboratory. Software modeling results identified open-loop instability, and therefore the requirement for closed-loop control. A simple PD control algorithm served as the basis for control, and a pseudo-feed-forward term was added to improve the results. The feed-forward term was derived form orbital dynamics as the rate at which the chase satellite traverses around an ellipse formed in the target's frame of reference. Reduction in pointing errors of up to 67% were found in simulations. Non-optimal yet successful tracking results were obtained in the laboratory with a hardware-in-the-loop model for both step and moving inputs. With minor modification, this infrared tracking system could be implemented onboard a microsatellite.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Identifying and Mitigating the Risks of Cockpit Automation
Cockpit automation has delivered many promised benefits such as improved system safety and efficiency, however, at the same time it has imposed system costs that are often manifest in the forms of mode confusion, errors of omission, and automation surprises. An understanding of the nature of these costs as well as associated influencing factors is necessary to adequately design the future automated systems that will be required for Air Mobility Command aircraft to operate in the future air traffic environment. This paper reviews and synthesizes Human Factors research on the costs of cockpit automation. These results are interpreted by modeling the automated cockpit as a supervisory control system in which the pilot works with, but is not replaced by, automated systems. From this viewpoint, pilot roles in the automated cockpit provide new opportunities for error in instructing, monitoring, and intervening in automated systems behavior. These opportunities for error are exacerbated by the limited machine coordination capabilities, limits on human coordination capabilities and properties of machine systems that place new attention and knowledge demands on the human operator. In order to mitigate the risks posed by these known opportunities for error and associated influencing factors, a system of defenses in depth is required involving integrated innovations in design, procedures, and training. The issues raised in this paper are not specific to transport aircraft or the broader aviation domain, but apply to all current and future highly automated military systems.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
The Need for a Global Space-Traffic-Control Service
Losing a satellite to an accidental on-orbit collision is no longer hypothetical, but real and increasingly likely. As a result, the need for global space-traffic control must be addressed by the space-faring nations, especially the United States. The fiscal and national security ramifications are too significant to ignore. The replacement cost of a satellite, perhaps hundreds of millions of dollars, is the most obvious impact. But, this may be the most trivial consideration. The greatest concern is the potential catastrophic loss of vital communications, navigation, weather, and other services we depend on for daily global commerce and defense. As a matter of national prestige, leadership and security, the US Government should endeavor to establish an international institution to govern global space traffic. As in 1944, the United States should convene a similar international conference with the purpose to establish such a service like the ICAO.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Wind Tunnel Analysis and Flight Test of a Wing Fence on a T-38
A low-speed wind tunnel study and flight tests were performed to examine the effects of a wing fence on the T-38A. Wind tunnel results were based upon force and moment data collected with a six-component balance and flow visualization at Reynolds numbers up to 0.3 x 106, based on mean aerodynamic chord. The model did not include the last 7.79 feet of the aircraft, and the engine and exhaust were modeled as through-holes. Five fence geometries, placed at wing station 125 ( 0.825 semispan), were compared. The best performer of these designs, based on drag polar, was the fence that wrapped the leading edge and extended 84.6 percent of the local chord length along the wing's upper surface. Wind tunnel data showed that this fence increased the lift coefficient by up to 6.3 0.6 percent and reduced spanwise and separated flow outboard the fence. The flight-tested fence was based on the best performing fence design from the wind tunnel study. The results were based on aircraft instrumentation and flow visualization at Reynolds numbers up to 9.98 x 106. It was inconclusive whether the fence caused an increase in lift coefficient. The fence reduced the roll-off tendency and wing rock during approaches to stall. Tuft visualization on the aircraft wing suggested that the fence reduced spanwise and separated flow outboard the fence, which agreed with the wind tunnel results.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Attitude Model of a Reaction Wheel/Fixed Thruster Based Satellite Using Telemetry Data
Attitude determination of satellites is normally the job of inertial instruments, such as gyroscopes, or through sensing instruments, such as star trackers orGlobal Positioning Satellites (GPS). Satellite health monitoring systems watch and determine if the satellite deviates from its normal operating attitudeorientation. Knowing the orientation of a satellite is essential in being able to control it in order to complete the satellite's designated mission. While there area multitude of ways to determine a satellite's orientation, very little research has been done on determining if the attitude of a satellite can be determineddirectly from telemetry data of the attitude control systems and an accurate spacecraft model. The fidelity of a satellite attitude determination model requiredto get reasonable predictions from using only telemetry data of the attitude controllers, such as thruster on/off indicators and reaction wheel rotor speeds, isinvestigated. Experimental tests using telemetry data received from the Air Force Institute of Technology's (AFIT) Simulated Satellite, SimSat, is used inverifying a Matlab model which outputs SimSat's orientation from SimSat's reaction wheel and thruster telemetry data. Software modeling results showed thatit is possible to determine a satellite's attitude from only the attitude controllers' telemetry data when the satellite's dynamic model is known.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Technology Transfer
Everyday within United States Air Forces' research laboratories there are hundreds of scientists and engineers whose research and development activities contribute to the advancement of science and technology for mankind. The opportunities for successful technology transfer within these research activities are unbounded. This thesis examines the Air Force Office of Research and Technology Applications (ORTA's) involvement with technology transfer, the complexities they face, the importance of their position, and what best practices ORTAs use to facilitate technology transfer. Air Force concerns and initiatives are detailed to provide perspective on balancing technology transfer with mission requirements and adherence to United States law. Legislative requirements mandate laboratories to transfer federally developed technologies to the commercial sector. Research indicates that several Air Force organizations routinely experience successful technology transfer more frequently than other Air Force organizations. The literature review indicates that historically, technology transfer from DoD has been predominantly passive.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Handbook for Stabilization/Solidification of Hazardous Wastes
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber With Development of an Optimized Design
An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. ne design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop increase was the design which used bifurcated cooling channels and high aspect ratio cooling in the throat region. An optimized bifurcated high aspect ratio cooling channel design was developed which reduced the hot-gas-side wall temperature by 18 percent andThis work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Application of Sliding Mode Methods to the Design of Reconfigurable Flight Control Systems
Observer-based sliding mode control is investigated for application to aircraft reconfigurable flight control. A comprehensive overview of reconfigurable flight control is given, including, a review of the current state-of-the-art within the subdisciplines of fault detection, parameter identification, adaptive control schemes, and dynamic control allocation. Of the adaptive control methods reviewed, sliding mode control (SMC) appears very promising due its property of invariance to matched uncertainty. An overview of sliding mode control is given and its remarkable properties are demonstrated by example. Sliding mode methods, however, are difficult to implement because unmodeled parasitic dynamics cause immediate and severe instability. This presents a challenge for all practical applications with limited bandwidth actuators. One method to deal with parasitic dynamics is the use of an asymptotic observer in the feedback path. Observer-based SMC is investigated, and a method for selecting observer gains is offered. An additional method for shaping the feedback loop using a filter is also developed. It is shown that this SMC prefilter is equivalent to a form of model reference hedging. A complete design procedure is given which takes advantage of the sliding mode boundary layer to recast the SMC as a linear control law. Frequency domain loop shaping is then used to design the sliding manifold. Finally, three aircraft applications are demonstrated. An F-18/HARV is used to demonstrate a SISO pitch rate tracking controller. It is also used to demonstrate a MIMO lateral-directional roll rate tracking controller. The last application is a full linear six degree-of-freedom advanced tailless fighter model. The observer-based SMC is seen to provide excellent tracking with superior robustness to parameter changes and actuator failures.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Costs of Arsenic Removal Technologies for Small Water Systems
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Comparing Risks From Low-Level Radioactive Waste Disposal on Land and in the Ocean a Review of Agreements/Statutes, Scenarios, Processing/Packaging/Disposal Technologies, Models, and Decision Analysis
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Alternative Pulse Detonation Engine Ignition System Investigation Through Detonation Splitting
A Pulse Detonation Engine (PDE) combusts fuel air mixtures through a form of combustion: detonation. The resulting change in momentum produces thrust. Recent PDE research has focused on designing working subsystems. This investigation continued this trend by examining ignition system alternatives. Existing designs required spark plugs in each separate thrust tube to ignite premixed reactants. A single thrust tube could require the spark plug to fire hundreds of times per second for long durations. The goal was to minimize complexity and increase reliability by limiting the number of ignition sources. This research examined using a continuously propagating detonation wave as both a thrust mechanism and an ignition system requiring only one initial ignition source. This investigation was a proof of concept for such an ignition system. First a systematic look at single tube geometric effects on detonations was made. These results were used to further examine configurations for splitting detonations, physically dividing one detonation wave into two separate detonation waves. With this knowledge a dual thrust tube system was built and tested proving that a single spark could be used to initiate detonation in separate thrust tubes. Finally, a new tripping device for better deflagration to detonation transition (DDT) was examined. Existing devices induced DDT axially. The new device attempted to reflect an incoming detonation to initiate direct DDT in a cross flow.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Hybrid Airships for Lift
With its reduced operating costs and point-of-need (PON) delivery ability, the hybrid airship is one lift option that offers promising capabilities to meet the DoD's future logistical challenges throughout the spectrum of conflict. When examining the hybrid airship in this capacity, it is essential for personnel to evaluate the platform through the appropriate framework without dismissing the idea based on inaccurate misconceptions. Establishing a new paradigm, distinct from traditional airlift and sealift frameworks, is critical in understanding how hybrid airships would be viable lift options in filling the current cost/speed gap in the distribution system. Assessing the hybrid airship in a distinct framework allows for a pragmatic examination of its key operational challenges. The vehicle proves to be far more robust and capable in terms of threat and weather survivability, along with ground and terminal operations, than commonly perceived.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Wind Tunnel Investigation of the Static Stability and Control Effectiveness of a Rotary Tail in a Portable UAV
The Air Force Research Lab, Munitions Directorate, Flight Vehicles Integration Branch (AFRL/MNAV) developed a manportable, carbon-fiber matrix UAV with a flexible rectangular wing of 24 span and 6 chord, 18.2" length. There is a need for the development of smaller and lighter UAV's to perform certain missions. The objective of this experimental study was to determine the behavior and the aerodynamic characteristics of rotary tails. The bird-inspired rotary tail mechanism studied enabled control of two degrees of freedom and was configured to provide elevator deflection and rotation. Its effects on the static stability and control effectiveness were measured using the Air Force Institute of Technology (AFIT) low speed wind tunnel. The yaw moment provided by each rotary tail was found to be on the same order of magnitude as a typical rudder, and in that respect it offers promise as an effective flight control scheme. However, it was also found that the side force, and consequently the yaw moment, generated by the two tail controls (elevator deflection and rotation) were strongly coupled, which could lead to challenging aircraft control issues. A benefit is that the configurations used in this thesis would reduce the storage length by 48%.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer
The purpose of this research was to develop a comprehensive digital avionics curriculum that will serve the needs of aeronautical engineering students at the Air Force Institute of Technology (AFIT). Due to the closing of the aeronautical engineering program at the Naval Postgraduate School, and the subsequent requirement to establish a digital avionics specialty course sequence at AFIT, a mature avionics curriculum does not yet exist that satisfies the needs of graduates who will serve as aeronautical engineers involved with the development, integration, testing, fielding, and supporting of military avionics systems as part of the overall aircraft system. Research was conducted through a comprehensive literature review and the use of a Delphi Technique survey process. 28 panel members representing the military, academe, and industry participated in a three round survey process that sought to identify the desired attributes of a newly-graduated engineer and the specific subject areas of study that should be included within the avionics curriculum. The result of this research was the development of a proposed three course curriculum that will instill the desired attributes within the aeronautical engineers and provide them with the avionics knowledge required at the correct level of proficiency. Recommendations on how to implement the proposed curriculum in an effective and timely manner are presented.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Critical Design Parameters for Pylon-Aided Gaseous Fuel Injection Upstream of a Flameholding Cavity
The Air Force Institute of Technology and the AFRL are investigating means to increase the efficiency of fuel-air mixing into supersonic flow. Previous work has shown much promise in increasing the penetration and mixing of a fuel-air mixture into the freestream by injecting fuel behind small triangular pylons. Pylon-aided fuel injection has also shown to lift the fuel plume off the combustor floor; this floor-gap prevents the ignition of fuel seeded in the boundary layer. In this paper twenty-one pylons of varying widths, heights, and lengths were examined in four specific test matrices within a CFD environment. Pylons in test matrix 1 maintained a constant height and length while varying the pylon width. Test matrix 2 and 3 varied the absolute height of two different pylons from test matrix 1; scaling the pylons height and maintaining a constant leading edge wedge angle and width to height ratio. The final test matrix varied the length of pylons while keeping the height and width fixed. Pylons with a width less than 3-diameters featured a fuel plume dominated by two sets of counter-rotating vortices.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Chromate Content Bias as a Function of Particle Size in Aircraft Primer Paint Overspray
Spray painting operations using chromate-containing primer paints produce particles which may expose workers to strontium chromate. Chromate contains hexavalent chromium (Cr(VI)) which is a confirmed human carcinogen. It is suspected that the smaller particles contain disproportionately less Cr(VI) than larger particles. In order to determine if a bias in chromate content exists, paint particles were collected and separated based on particle size and the Cr(VI) concentration was determined. Aviation primer paint from the DeSoto and Deft companies was sprayed in a booth and seven-stage cascade impactors were used to separate particles. The particles were grouped into fourteen distinct bins based on size within an overall range of 0.7 to 34.1 um mass median aerodynamic diameter. The total mass of dry paint collected in each bin was quantified and the paint was analyzed for Cr(VI) mass.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Optimizing Mean Mission Duration for Multiple-Payload Satellites
This thesis addresses the problem of optimally selecting and specifying satellite payloads for inclusion on a satellite bus to be launched into a constellation. The objective is to select and specify payloads so that the total lifetime utility of the constellation is maximized. The satellite bus is limited by nite power, weight, volume, and cost constraints. This problem is modeled as a classical knapsack prob- lem in one and multiple dimensions, and dynamic programming and binary integer programming formulations are provided to solve the problem. Due to the compu- tational complexity of the problem, the solution techniques include exact methods as well as four heuristic procedures including a greedy heuristic, two norm-based heuristics, and a simulated annealing heuristic. The performance of the exact and heuristic approaches is evaluated on the basis of solution quality and computation time by solving a series of notional and randomly-generated problem instances. The numerical results indicate that, when an exact solution is required for a moderately- sized constellation, the integer programming formulation is most reliable in solving the problem to optimality. However, if the problem size is very large, and near- optimal solutions are acceptable, then the simulated annealing algorithm performs best among the heuristic procedures.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Crew Exploration Vehicle Skip Entry Trajectory
This research effort develops a program using MATLAB to solve the equations of motion for the atmospheric reentry of the Crew Exploration Vehicle (CEV) which is assumed to be in the phase of a lunar return trajectory that could be initiated any time during the mission. The essential reason for this research is to find a solution for the problem of an unplanned lunar return in addition to the normal procedures. Unlike Apollo type missions, the CEV would still be able to land on any preplanned available landing sites without any additional delay. In Apollo type missions, the return phase had to be initiated in a restricted time window so that the crew module could enter the atmosphere at the preplanned time and be able to land at the planned landing site. Using skip entry procedures, landing location and time will be more accurate in addition to having the time flexibility for reentry. This MATLAB program is designed to find the reentry parameters for given landing location according to the current alignment of the moon using a lunar return speed including the atmospheric trajectory of the CEV.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Development of a Flapping Wing Design Incorporating Shape Memory Alloy Actuation
This research sought to validate a proof of concept regarding shape memory alloy actuation of a flapping-wing blimp. Specimen wires were subjected to cyclic voltage at increasing frequencies to quantify expected strains. A laser vibrometer captured 2048 sample velocities during single contraction and elongation cycles, and the resulting samples were used to calculate displacements. Displacements were determined ten times for each specimen and frequency to compute averages. Subsequently, a circumventing frame was designed to encase a blimp envelope and provide support for a flapping motion actuation system. Contraction of shape memory wire translated force to the flapping mechanism via bellcranks, pushrods, and clevises, while bias springs promoted elongation of the wire during power-off phases. Performance characteristics of the flapping system, augmented with each specimen wire individually, were determined during bench-top testing. A modified frame was constructed to reduce weight and fitted to a larger envelope due to buoyancy limitations of the original envelope. A circuit was constructed, cycling voltage at 0.2 hertz, to actuate the specimen wires. Performance of the system was observed with the incorporation of each specimen. Optimum performance was realized with the 0.005 inch diameter specimen wire, producing 25 to 35 degrees wing deflection.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Comparative Analysis of the Cost Estimating Error Risk Associated With Flyaway Costs Versus Individual Components of Aircraft
A shrinking workforce, unstable budgets, and rapidly changing objectives under stricter time constraints characterize today's cost analysis and acquisition environment. In concert with this environment, cost analyst positions have rapidly decreased as demonstrated by Aeronautical Systems Centers 54% decline in total authorized slots from 1992 to 2001. The question is how to deal with this 'more with less' mentality.The purpose of this research is to investigate and measure the risks associated with taking a macro versus micro approach to aircraft cost estimation. By analyzing the fidelity of a cost estimate developed at the flyaway cost level versus a cost estimate developed at the individual components level, this research provides guidelines for appropriate allocation of cost analyst resources. This objective is accomplished by looking at the cost estimation error risk of recurring costs at level one of the Work Breakdown Structure (WBS) and at level two of the WBS.Results show that there is a statistically significant difference between estimating at the differing WBS levels. However, from a practical standpoint, the difference in dollar terms is too small to be considered significant. As a result, program manager should allocate resources based on other constraints such as time allotted to complete the estimate or required level of visibility into the estimate.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Systems Architecture and Advanced Sensors Application for Real-Time Aircraft Structural Health Monitoring
Aircraft are being pushed beyond their original service life, increasing the potential for structural failures. A catastrophic in flight failure of an F-15 bulkhead and severe cracking in the C-130 Wing rainbow fitting are two recent examples that have caused major problems for the Air Force. Previous Aircraft Structural Health Monitoring Systems research primarily explored using a system during the ground maintenance phase. This research will explore a Real-Time Aircraft Structural Health Monitoring System (RTASHMS) that includes a ground phase as well as an in-flight phase. The RTASHMS will continuously analyze structural hot spots, detect critical structural damage or cracks and will alert pilots and maintainers of potential trouble before a catastrophic structural failure. Current sensor technology has limited the construction and use of a reliable aircraft structural health monitoring system. This research will compare the capabilities of current sensor technology with the capabilities of a new cutting edge sensor. The new sensor shows promise in advancing a reliable RTASHMS from theory to reality. This technology was validated in Aluminum Dog Bone specimens and Composite Lap Joint with nano-adhesivesThis work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Description and Sampling of Contaminated Soils
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Computational Fluid Dynamics Investigation of Vortex Breakdown for a Delta Wing at High Angle of Attack
Using the commercially available FLUENT 3-D flow field solver, this research effort investigated vortex breakdown over a delta wing at high angle of attack (?簣) in preparation for investigation of active control of vortex breakdown using steady, alongcore blowing. A flat delta-shaped half-wing with sharp leading edge and sweep angle of 60 [degrees] was modeled at ?簣 = 18 [degrees] in a wind tunnel at Mach 0.04 and Reynolds number of 3.4 x 10 5. A hybrid (combination of structured and unstructured) numerical mesh was generated to accommodate blowing ports on the wing surface. Results for cases without and with along-core blowing included comparison of various turbulence models for predicting both flow field physics and quantitative flow characteristics. FLUENT turbulence models included Spalart-Allmaras (S-A), Renormalization Group k-?繕, Reynolds Stress (RSM), and Large Eddy Simulation (LES), as well as comparison with laminar and inviscid models. Mesh independence was also investigated, and solutions were compared with experimentally determined results and theoretical prediction. These research results show that, excepting the LES model for which the computational mesh was insufficiently refined and which was not extensively investigated, none of the turbulence models above, as implemented with the given numerical grid, generated a solution which was suitably comparable to the experimental data. Much more work is required to find a suitable combination of numerical grid and turbulence model.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Optimal Spacecraft Attitude Controlusing Aerodynamic Torques
This thesis introduces a method of three-axis spacecraft attitude control using only aerodynamic torques. Attitude actuation is achieved using four control panels mounted on the rear of a cubical spacecraft bus. The controller consists of an outer loop using linear state feedback to determine desired control torque and an inner loop to choose appropriate control panel angles. The inner loop uses a Jacobian-based approachto invert the nonlinear relationship between panel angles and generated torque. Controller performance is evaluated via simulations, which show that three-axis control is possible over a range of initial angles and angular rates. The analysis used partial accommodation theory as the basis for aerodynamic torque calculations and assumed a rotating atmosphere with an exponential density profile.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Aeroelastic Analysis of a Joined-Wing Sensorcraft
This study performed an aeroelastic analysis of a joined-wing SensorCraft. The analysis was completed using an aluminum structural model that was splined to an aerodynamic panel model. The force and pressure distributions were examined for the four aerodynamic panels: aft wing, fore wing, joint, and outboard tip. Both distributions provide the expected results (elliptical distribution), with the exception of the fore wing. The fore wing appears to be affected by interference with the joint. The use of control surfaces for lift and roll was analyzed. Control surfaces were effective throughout most of the flight profile, but may not be usable due to radar requirements. The aft wing was examined for use in trimming the vehicle. Also, two gust conditions were examined. In one model, the wing twist was simulated using a series of scheduled control surfaces. Trim results (angle of attack and twist angle) were compared to those of previous studies, including gust conditions. The results are relatively consistent with those calculated in previous studies, with variations due to differences in the aerodynamic modeling. To examine a more physically accurate representation of aft wing twist, it was also modeled by twisting the wing at the root. The twist was then carried through the aft wing by the structure. Trim results were again compared to previous studies. While consistent for angle of attack results, the aft wing twist deflection remained relatively constant throughout the flight profile and requires further study.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Pilot Mental Workload Calibration
The issue of predicting high pilot mental workload is important to the United States Air Force because lives and aircraft can be lost when errors are made during periods of mental overload and task saturation. Current research efforts use psychophysiological measures such as electroencephalography (EEG), cardiac, ocular, and respiration measures in an attempt to identify and predict mental workload levels. Existing classification methods successfully classify pilot mental workload using flight data from the same pilot on the same day but unsuccessfully classify workload using data from a different pilot on a different day. The primary focus of this effort is the development of a calibration scheme that allows a small subset of salient psychophysiological features developed using actual flight data for one pilot on a given day to accurately classify pilot mental workload for a separate pilot on a different day. Extensive raw data preprocessing, including 29 Fourier transformations for each second of flight data, prepares the feature data for analysis. The signal-to-noise ratio feature screening method is employed to determine the usefulness of 151 psychophysiological features in feed-forward artificial neural networks.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Spacecraft Proximity Operations Used to Estimate the Dynamical and Physical Properties of a Resident Space Object
When conducting a space proximity operation, developing high-fidelity estimates of the dynamical and physical properties of a Resident Space Object (RSO)based on post-rendezvous observational data acquired, is imperative for the understanding of the RSO itself and the operating environment. This research investigatesthe estimation of relative motion dynamics, rotational dynamics, and the feasibilityof estimating the moments of inertia of a RSO. Using the Hill-Clohessy-Wiltshire equations, rigid-body dynamics, and estimation theory, a nonlinear least squaresestimation algorithm is implemented in the processing of range data from tracked observation points on the RSO body. Through simulation, it was determined that accurately estimating the relative motion and rotational dynamics is possible. However directly estimating the moments of inertia using range data proved to be problematicand exposed a possible observability limitation. Yet in general, the solutions were heavily dependent on the quality of the a priori knowledge as well as the reduction of solution ambiguity through the use of multiple observational data sets.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Burning Tires for Fuel and Tire Pyrolysis
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
A Static Aeroelastic Analysis of a Flexible Wing Mini Unmanned Aerial Vehicle
The static aeroelastic behavior of the Nighthawk mini unmanned aerial vehicle is examined using acombined experimental and computational approach. Three wings are examined. In order of increasingstiffness they are: a flexible wing, a stiff wing, and a fictitious rigid wing with zero deflection. Photogrammetryis used during wind tunnel testing to measure the average deflected shape of the flexible and stiff wingsduring flight. The independent variables during wind tunnel tests are angle of attack (ranging from -5.1othrough 13.4o) and velocity, which is 20 mph, 30 mph, and 40 mph. Roll angle and yaw angle are controlvariables, held constant at 0o. The measured deflection of each wing is used to adjust the wing shape forcomputational fluid dynamics analysis. Solutions are obtained for the flexible, stiff, and undeflected (or rigid)wings using a steady-state viscous flow solver with a Spalart-Allmaras turbulence model. The flexible andstiff wings experience two forms of deformation during flight. They bend upward along the span increasingthe dihedral, and the leading edge twists downward (wing washout). The amplitude of deflection is greatestfor the flexible wing. As a result, the flexible wing is more stable, but also exhibits worse static aerodynamicperformance. The rigid wing has the greatest lift (CL max=1.29) and the highest lift-to-drag ratio (L/Dmax =10.2).Stall occurs first near the root for all three wings. None of the wings stall at the tip in the range of angles ofattack tested. A separation bubble forms under the wing at angles of attack less than 8o. This separationdecreases the overall lift. It is most prominent on the flexible wing.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Modeling Vertical Flow Treatment Wetland Hydraulics to Optimize Treatment Efficiency
An upward Vertical Flow Treatment Wetland (uVFTW) at Wright Patterson AFB designed to bioremediate contaminated groundwater exhibits hydraulic short-circuiting. Prior studies estimated that groundwater flowed through less than 50% of the wetland's volume, and that the mean residence time was significantly less than the nominal residence time, which was calculated assuming flow through the entire wetland volume. The objective of this research was to investigate how uVFTW hydraulics affects treatment efficiency, and to propose design strategies to maximize treatment efficiency. A groundwater flow and contaminant transport model of a uVFTW that couples hydraulics and degradation kinetics was built and applied to estimate the effectiveness of engineering solutions aimed at improving treatment efficiency. Model simulations indicate that the engineering solutions improve hydraulic residence times, volumetric utilization, and treatment efficiency over the existing wetland, but also that increasing hydraulic residence time only has a significant impact on treatment efficiency when the time scale for the biodegradation process is similar to the wetland residence time. Degradation kinetics must be quantitatively understood to determine an optimum range for hydraulic residence time, and to ensure that resources are not wasted in an attempt to improve hydraulic performance where no improvement in degradation performance is possible.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Computer-Assisted Procedure for the Design and Evaluation of Wastewater Treatment System Users Guide
The U.S. Environmental Protection Agency (EPA) was introduced on December 2, 1970 by President Richard Nixon. The agency is charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress. The EPA's struggle to protect health and the environment is seen through each of its official publications. These publications outline new policies, detail problems with enforcing laws, document the need for new legislation, and describe new tactics to use to solve these issues. This collection of publications ranges from historic documents to reports released in the new millennium, and features works like: Bicycle for a Better Environment, Health Effects of Increasing Sulfur Oxides Emissions Draft, and Women and Environmental Health.This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.